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I. General Introduction

The purpose of this report is to describe the results of a survey on

the techniques that are available for studying the effect of random parameters

on the response characteristics for linear dynamical systems. We are, there-

fore, concerned with the properties of the solutions of ordinary linear

6. idifferential equations with random parameters.

There are two classes of random parameters that we distinguish between

in this report. They are time independent (constant) random parameters,

and time varying random parameters. In both cases, structural applications

are of interest.

Before, we outline the content of this report, we briefly consider the

history of the general problem of parameter uncertainties and parameter

fluctuations to see why they cannot be overlooked.

Very early in engineering design, factors of safety were introduced to

account for our lack of precise knowledge of the structure and its loads,

factors of safety quantified the fact that loads, material behavior,

structural element properties, etc., could not be accurately estimated.

Indeed Roebling and his engineers in 1880's, by means of very careful

computations, estimated the factor of safety of the then new Brooklyn

Bridge to be above iive. Later estimates in 1944 placed this figure at

four. These factors essentially tell us that column misalignment,

residual stress due to manufacturing errors, reduction of working area due

to corrosion, member weight, joint behavior, etc., etc., would have to be

large indeed before the integrity of the structure could be put into

question. In other words, parameter variability would have to be beyond

all reasonable bounds before the bridge could fail. Roebling and his

engineers were correct in their estimation of the effect of parameter

variability on the safety of their bridge. However, in the first Quebec

Railway Bridge (1907) errors in estimation of member weight, in the effect

of column misalignment and in the behavior of new types of columns, lead

to failure because the effect of parameter variability exceeded the bounds

that the factors of safety could absorb.

I
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Along the same lines, consider the buckling under axial loading of

thin cylindrical and conical shells. The buckling load of such shells

can be calculated. However, in 1950's, 1960's extensive tests of such

shells revealed that the actual buckling loads were significantly lower

than calculated. This discrepancy between calculated and actual was

traced to the fact that there were random deviations from the regular

geometrical shape assumed. These are reflected in the fact that the PDE's

whose solution produces the buckling load contains random variations, in

its parameters.

Randomly time varying parameters occur to a great extent as a result

of environmental fluctuations that effect the system. The vibrations in

aerospace vehicles due to atmospheric turbulence is one prime example.

This is reflected in random load variations on the structure which are of

particular significance, for example, on rotating lifting surfaces such as

helicopter blades. There has been a great deal of attention to this

problem due to the critical nature of the stability and safety of

helicopters.

Liquid sloshing in the tanks which are undergoing vertical excitations,

also is a problem that was actively studied for the stability of the initial

atmospheric stages of the lifting of large rockets. In both of these

Iproblems, randomly fluctuating parameters are present in the analytical

equations that model the response characteristics of these components. In

general, inverted beams, pendulums as well as aerodynamic panels subjected

to random end loads, will be described by models with randomly varying

parameters.

Moreover, for the control of such systems with uncertain parameters,

it is necessary to be able to characterize the response of the controlled

system, in order to determine the accuracy required to achieve prescribed

control accuracies.

Surveying the techniques and results in this overall class of problems,

it appears that there exists a natural distinction between the case of

random time dependent (fluctuating) parameters and the case of the random

time independent (constant) parameters. We shall, therefore, distinguish

between these two cases.

.1' . , , . . . '''" ",' '' ', " " " " ". , * . h - .
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We shall carry on this distinction in the next sections of the

Introduction, as well as the general survey of results.
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I. 1 Introduction - Time Varying Structural Equations

Time varying models of engineering systems occur for a number of geo-

metrical, environmental as well as analytical reasons. They occur for

geometrical reasons as a result of the location and directions that external

excitations impact upon a system, while the system's physical parameters (damping,

stiffness, etc.) are assumed to remain fixed. They occur as a result of environ-

mental properties due to chemical effects, thermal effects, and radiation effects

that are reflected in varying physical parameters for the components of the

system. These may be of a periodic random nature or of a monotonic random nature

due to ageing of the components in general. Finally, they occur in studies of

non-linear systems. In particular, if one wishes to study the linearized

equations of small oscillations about some specific (non-equilibrium) system

response, time varying coefficients will be present.

In the geometrical case, those systems which are subjected to base

excitations, such as pendulums and missiles; to end loadings, such as beams

with various supports, and finally to boundary edge loadings, such as plates and

shells, will be described by differential equations with time varying coefficients.

These cases are illustrated in the following figure*
(a) (b) (c)

4 [" Pn(t) j P 0 + n(t)

P + n(t)

Figure I

p- J .
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These cases lead to differential equations of the following form,

[1.1, 1.2, 1.31

Pendulum

(a) 6+ cE + (k+n(t)O= 0, (k < 0 for inverted pendulum)

Single Supported Beam (1.1)

(b) w + 2 8wt + (p+n(t))wxx+w =0tt xxxx

w(O' =w (o,t)=0, w(lt) = w xx(l,t) = 0

() Infinite panel of unit width in supersonic flow
(C) wt + 26wt + Mw + (p+h(t))wx + w =0

tt t 0 xx xxxx

4(boundary conditions same as above)

Using modal expansions, (b) and (c) lead to equations of the form (a).

For the general linear structure that we shall be concerned with in this

development, the model will be assumed to be of the form

M X+C(t) x+K(t)x = ?(t) (1.2)

The response vector x , will be n-dimensional for the n-mass structure,

the nxn mass matrix M, will always assumed to be known and most often fixed

(although this is not necessary). The nxn damping matrix C(t) and stiffness

matrix K(t) will, in general, contain randomly varying elements. The n-vector

represents external excitations that may be random. The external excitation

vector f does not pose any analytical difficulties and may be treated as the

non-homogeneous part of any linear differential equation. It is the randomly

fluctuating coefficients in the matrices C(t), K(t) that generate the dif-

ficulties. Time varying systems are difficult to analyze quantitatively even

in the deterministic setting. Thus, the random setting will be at least as

jdifficult. Naturally, all will depend upon the assumed properties of these
random coefficients.

* References in Sections I-V are given after Section V.

!<
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If these random coefficients are due to fluctuating external loadings,

they will have frequency spectra (power spectral densities in the second order

stationary case) that will cover a band containing low frequency as well as

high frequency components. If the bandwidth is large and relatively constant,

then in many cases it makes sense to model the coefficient fluctuations as

Gaussian white noise. If, on the other hand, there are definite peaks in the

frequency spectrum and the larger frequency components are less pronounced

(essentially band-limited) then Gaussian white noise is not a suitable model.

In this case, so-called, physical noise is the proper model for the coefficient

fluctuations. Finally, when the coefficient fluctuations are due to environ-

mental effects (thermal, chemical, radiation, or ageing) it is natural to model

the fluctuations as slowly varying (i.e., narrow band, low frequency). Small

parameters can be applied via approximation schemes. In a related situation

if there are small random fluctuations about a nominal value, again small paramneters

can be applied via approximation schemes. However, in this last case, we must

be careful. For example for the simple undamped oscillator [1.4]

S+ (,2 + en(t) )x = 0, (1.3)

if n(t) is the gaussian white noise then no matter how small c>O, the

second moments, as well as the sample solutions, will become unbounded. Thus,

even though random fluctuations are small in their variances the system can

still become unstable. This important point cannot be overstressed in analyzing

systems with random coefficients. Therefore careful attention must be paid

ii always to meaningful approximations, especially when small parameters are

TP present.

The importance of the white noise assumption for the coefficient

fluctuations is that the solution process is Markov allowing us to use the

many tools available. In particular, the Fokker-Planck equation, the generator

of the associated diffusion process and finally, the related Ito differential

formula can be applied.

N
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The statistical moments such as means, variances and covariances can be

obtained explicitly for these linear models. In general, however, probability

densities cannot be obtained explicitly.

For physical noise coefficient processes, the story is quite different.

Here, we cannot even obtain the moments explicitly, unless very specific

"A simplifying assumptions are made. For example, if the system coefficient

matrices generate a Lie algebra [1.5] then the solution moments can be obtained

explicitly. If the physical noise is almost a white noise, an associated system

can be studied with white noise coefficients, having statistical properties that

are similar to the original system [1.6], [1.7], [1.8]. Under assumptions

of small parameters, an associated Markov process can be obtained, which also

will yield valid approximations to the statistical properties of the original

system. [1.9], [1.10], [1.11].

Finally, in lieu of all of these,successive approximations must be

applied [1.12-1.18] simply based upon the assumed physical noise statistics.

The essential reason that the physical noise coefficient case cannot yield

-4 the exact statistical properties of the response, is simply that the co-

efficient process at any given time is correlated to the response at that time.

To illustrate this fact, let us consider the simple first order scalar equation

x + (a+n(t))x = 0, (1.4)

Upon taking expectations, we find

d E{x(t)} + aE {x.j} + E{n(t)x(t)} - 0. (1.5)

p.'

It is the term E"n(t)x(t). , that is of concern to us. Since n(t) is

a physical noise, with dependence upon the past, we cannot simplify this term

any further. On the other hand, if n(t) is the gaussian white noise, then

jn(t), x(t) are independent random variables for any t, which allows us to write

E{n(t)x(t)} = En(t)E.x(t). (1.6)

f %
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i 

In view of (1.6), we can then write (1.5) as

a r(t) + (a+E{n(t)})m(t) = 0, (1.7)

.%

which is a simple linear scalar equation for the mean response,

m(t) - E {x(t) }.

Naturally, this extends to higher order structural system equations as

well. It is interesting to note at this time, that the many recursive schemes

for obtaining the approximations to the moments, or probability densities, for

the physical noise case base the initial approximation on the assumption of

independence of the coefficient process with the response process. At this time

there does not appear to be any general technique available to obtain even the

exact moments for the linear system with physical noise coefficients.

There are other interesting properties that must be taken into account when

studying the statistical properties of the dynamics of systems with uncertain or

randomly fluctuating coefficients. It is possible that the average, statistical,

properties of the response process may be quite distinct in character from the

actual sample solutions themselves. In particular, the asymptotic behavior of

-: the mean motion may be divergent or even be undefined (so-called finite

explosion time) yet the actual, sample, behavior of the response will remain

quite regular. This anomalie occurs for systems with random coefficients since

we are dealing not only with the solutions of differential equations, but with

their ensemble averages as well.

We illustrate this non-intuitive behavior with two simple first order

scalar equations.

Example 1.1 - Finite explostion time for moments.

Let ,b, be a zero mean gaussian variable (constant in time), with unit

b 
2

variance. Thus, p(b) = e , the probability density for b.
a2-
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We study the mean behavior of the solution to the scalar equation

x(t)b 2x(t), x(0)= 1 (1.8)

We can easily find the sample solution to (1.8) to be

2
btx(t) =e t _0 (1.9)

* -~Clearly, the samples are exponentially increasing as tf-, with a rate
2

depending upon the specific value b e[0,).

kNow, what can be said about the behavior of the moments, mk(t) Efx (t)}?

We merely have to evaluate the expectation

2 2  2
E{x k(t)} = E{ekb t} 1 f e2 e kbtdb

27T

1 eb2 (kt 1-  (1.10)
= 2-T 2 e ( t- 2 db.

We see from (1.10), quite obviously, if t >-, then the kth moment
2k 1

does not exist! That is, it becomes infinite. Thus, for t>- all moments

are infinite, even though the sample solution behavior, from (1.9) is quite

regular. Hence, the mean motion will not exist after finite time, even though

the system response is well behaved as exponentially increasing curves.

We now look at a somewhat more complicated case, with randomly varying,

physical noise, coefficients.
U'

i-
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Example 1.2 - Increasing Moments - Decreasing Samples

For this example, we assume the fluctuating coefficient, scalar first

order equation,

Sx(t)+ (a+ n(t) x(t) = 0, (1.11)

where a>O is a known constant and the stochastic process in(t), t 0},

is gaussian with zero nean and covariance function

2 Its (1.12)
Y (t,s)= Efn(t)n(s)) = ar e-Isl(.2

The n-process is a stationary gaussian process, whose spectral density

is absolutely continuous. Therefore, it is known to be [1.19] ergodic.

Thus, we can equate time averages and ensemble averages, with probability

one. t

In particular, lim - n(s)ds=E{n(- )} = 0 with probability one.
t+M t Jo

The n-process is, in fact, the so-called Ornstein-Uhlenbeck process [1.20]

whose sample functions are known to be continuous functions with probability

one. (This is in contrast to the random telegraphic signal, a non-gaussian

process whose covariance is given by (1.12), but whose samples are piecewise

constant- (see [1.21] for a discussion)).

A, Thus, we can integrate (1.11) directly, to yield the sample solutions for

. X(o) = 1,
t

-at -!n(s)ds

x(t) = e -Jo (1.13)

In order to study the asymptotic behavior of the response, x(t), we form

the limit,

a t - n(s)ds a-t n(s)ds) (.14)

lim x(t) = lim e 0= lim e

tIt



However, by the ergodic properties of the n-process, we have

lim (-a- 1  n(s)ds) = -a-lrm - n(s)ds
t t f oos o (1.15)

-- a, with probability one.

~-at

Finally, since e - 0 as t+-, it follows that lim x(t)= 0 with

probability one. This property is independent of the magnitude of u2! Therefore,

what we have established, is that all sample solutions (i.e. with probability

one) (1.13) of the equation (1.11) will approach zero asymptotically. In the

general literature on stochastic linear systems, this is usually referred to

as almost sure asymptotic stability (See e.g. [1.21 or [1.22]).

Now we study the statistical properties of the solution process (1.13)

in order to determine their asymptotic behavior. We concentrate on the moments.

To illustrate the basic results here, it is sufficient to study the mean motion,

first moment, E{x(t)l.

Since the solution is known explicitly by (1.13), then the mean can be

evaluated as, t t
E{x(t)} = Ee }at- fn(s) e-at E{e fn(s)ds (1.16)

The n-process is gaussian, therefore, since linear operators on gaussian

processes, yield gaussian processes (e.g. see [1.20]), it follows that

ro n(s)ds=N(t) is a gaussian process.

Jo

We need merely calculate the mean aid variance to obtain the associated

gaussian density function for N(t), that is

(N mN(t))
2

p(N,t) = _ 2a N(t) (1.17)
j0 a (t
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We have, by direct calculation

t t

mN(t) = E{N(t)} E{1 n(s)ds} f E{n(s)}ds 0

t t t

02(t) = E{N 2(t)} E{f n(s)d, 2~ E{f dT fda n(T)n(s)} (1.18)

t t t t

J- dT fds E{n(T)n(s)} = {dT f ds a e
0 0 0 0

22 -

2cy [t + e-t-].

Since it is easily seen by direct calculation, that

-N(t)a tE{e } exp [9
2

then upon substituting the result of (1.18) yields

2 2 -

E{x(t)}.= e(a -a)t e
a (e -1) (1.19)

As t approaches infinity it is obvious that the term e
a 2 -a)t

determines the asymptotic behavior of (1.19).

Therefore, for a 2>a, the mean motion satisfies,

lim E{x(t)} (1.20)
t +

with exponential rate of increase, Yet for any a2 we have seen that the

samples approach zero asymptotically with probability one!

@

I
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Again, this illustrates completely opposite behavior of the sample

responses and the mean response for systems with random coefficients.

Such non-intuitive features of systems with uncertain or randomly fluctuating

coefficients make it imperative that when assuming statistics of the coefficient

processes the induced statistical properties of the response be carefully

investigated when actual engineering design considerations are to be made for

structures and their controllers.

Clearly, the statistical measures may be quite misleading as to the nature

of the true response characteristics. (See [1.23] for an early discussion of

this problem, and [1.24] for the exact statement relation asymptotic moment

behavior and asymptotic sample behavior).

It follows that we must further question what the statistics can tell us

about the structural response fluctuations.

We will deal with these questions along with the development of the

statistical characteristics below.

We will first look at the white noise coefficient case, the physical noise

coefficient case, and various approximation schemes in that order. We will

concentrate on what statistical measures (moments, probability densities) can be

obtained exactly, or approximately.

P

i
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1.2 Introduction - Time Invariant Structural Equations

This introduction is concerned with response prediction in a time-

invariant system when it is not possible to specify the system exactly.

Two questions immediately come to mind. First, do situations exist

where it is not possible to specify a system exactly as is required for

qexact response prediction? Second, does it make any great difference to

the engineer (in response prediction) if he does not have accurate sys-

ten specification? It is instructive to develop reasons why the answer

to each of these questions is sometimes yes. Two preliminary rciarks

are in order before proceeding.

.:e know that in classical mechanics, applied mechanics, strictures,

smill vibration, in text books, and in most design procedures, the sys-

" ten is regarded as known exactly. That is, ,asses, stiffnesses, and

dissipation are regarded as known exactly. Response prediction in these

"ideal" situations is thus exact, of course. The possibility that the

,._4 system specification is in many practical engineering situations uncer-

tain is never brought up for consideration.

For any rational discussion of the influence of system uncertainty

on accuracy of response prediction, it is important to clearly specify

the type of system under consideration so that the scope of the problem

is kept within reasonable bounds. We assume the system is holonomic

with generalized coordinates ql, ... , qn' where n is finite; thus, the

system has n-degrees of freedom. We next assume the configuration

ql ""n about 0 is one of stable equilibrium. We further assume small

motion about this configuration of equilibrium, and take the dissipation

to be viscous. To obtain the equations of motion by Lagrange's method,

we require the kinetic energy T, the dissipation function F, the

'I
l ~ ' ;.. ~\:*'I'~%~%~ A-



-15-

potential eneigy V, and the virtual work 6 W of tile external forces. We

know [ ] that we may write

T q , V kkqjq
2 jki 2 j

F c q q 6W = f.(t)6q (1.21)

where sunnation convention is employed and the f.(t) are the external

force components. T is a positive definite quadratic form with constant

mjk = mkj. We assume that F is positive definite to ensure only dissi-

pation and take constant c.3k = Ckj. Since the equilibrium configuration

is stable, V 's also positive definite and we take c = ckj (constant).

Lagrange's equations

d 3T 3T 3F + V

dt Tv 8q +q = f.(t) * J = I, ... , n (1.22)

thus provide the equations of notion from which response prediction are

obt.ained. Ie can now discuss how uncertainty enters system specifica-

tion in a significant manner.

First, observe that in a deformuable structure (system) we require

an infinity of coordinates to specify the configuration. Our choice of

coordinates q1 ' ... qn' where n is finite, immediately points up the

fact that we do not have enough coordinates to specify the configuration

of the system exactly even though we know the organization of the system

in terms of members, joints, masses, etc. However, it is reasonable to

assume we can select a set of q,, ... ' q that will serve for our

specific purpose, as is done in finite element modeling. Thus, we shall

disregard uncertainty in system specification due to coordinate choice

in what follows.

Next, consider V. The kjk (stiffness coefficients) will be calcu-

%kijI-! '
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late1 from geonetry and material behavior employing one of the standard

methodology. Even if considerable effort (say, by finite element tech-

niques) is expended in computation of these kjk within the frame work of

the selected ql, .... qn' the influence of joint behavior, for example,

r., on the value of the kjk can never be estimated exactly. Further,

changes in joint friction due to corrosion will cause joint behavior to

slowly change with time. Since joint behavior, which determines end-

conditions for the relevant members, frequently has a profound influence

on member stiffness, uncertainty in joint behavior will produce uncer-

tain k. Further, structural members may rupture due to aging or may
jk

be partially inoperative due to assembly and/or manufacturing errors and

r -,ain undCtected. No matter how hard we try to accurately estimate, at

l ,ast sorie of the k will actually have values different from what we
jk

est inate.

The entire area of passive dissipation mechanics is at best on an

insecure foundation. 'lathematical convenience has dictated the form of

F in (1.21) [seeRay];to be specific, the form assumed produces linear

dissipative terms in the equations of motion. Mathematical convenience

is an important point; however, experimental evidence is required (and

we are not aware of it) to demonstrate that viscous damping does produce

physically accurate response over the entire frequency range.

Given the form if F in (1.21), there are, in general, no reliable

techniques for calculating the cjk in a rational manner. In the absence

of large concentrated dissipators (dampers), it is usual practice either

to assume the cjk values are roughly proportional to the kjk and/or the

mjk, where the proportionality constant is adjusted to produce dissipa-

5 tion in the first mode of notion equal to that observed in similar

U
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% structures, or to assume the are ;,ore less constant in value over

the structure with a : ultiplicative constant adjusted as in the previous

case. The cjk arising fron concentrated dampers can be estimated over a

frequency interval from test results; however, accuracy in the estimates

is usually not greater than ±50%. In all events, we will rarely have
1,R~w accuracy in the cjk values even comparable to that obtained for the kjk.

We can calculate or weigh the elements with as great an accuracy as

required. Thus, the physical elements that enter into the computation

of T have accurately estimated rasses. Given our choice of the

1 ... "'P qn' there are a number of methods for calculating tile mjk

["constant i-ass matrices"]. Accuracy in the valles of the mjk is obvi-

ously not going to be a problem for a time invariant syuti ur for a

sv te ri in %.hich the total mass changes slowly in a n ianner.

Although we recognize that the live load in a lauilding or bridge rlay not

be known precisely, we shall assume on occasion -in this report that the

J mjk are accurately known.

We conclude from the discussion up to this point that uncertainties

will exist in the c and kjk values, with the forer being larger thanCjk j

in the latter. Return to the first question -
"do situations exist where it is not possible to

specify a system parameters exactly ...?"

The answer is obviously "yes" and we have indicated a few of the possi-

bilities.

We now come to the second question -
"does it make any difference to the engineer (in
response prediction) if he does not have accurate

system specification?"
A few preliminary analytical details will provide a framework with which

to motivate the answer.

Let us first write out (1.22) employing (1.21) assuming the al,....q

I
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have been selected so that the known (assume the mjk are not uncertain)

kinetic energy has the form

T = 2 (1.23)

2 q

q + Cq + k = f (t) , j = 1, ..., n . (1.24)

Next, introduce the (nxn) matrices/ 1 0

C = Cj K {kjk} I (1.25)

and the (i)xl coliunn vector

q - . (1.26)

Then ':e can write (1.24) as

Iq +Kq + Kq =fl, (1.27)

where I is the (nxn) unit atrix.

Let us now put the second order system in the first order form:

x = Ax + f (1.28)

by employing the substitutions

A = K x= ,f= (1.29)

f \ )
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where A is a (2nx2n) matrix and x and f are (2nxl) column vectors. We

note that (1.28),when written out, consists of 2n first order equations

whereas (1.27) consists of n second order equations. The nice feature of

(1.28) is that we can immediately write down its solution; if at t - 0,

x = x0, then,

qo
A~-) t A(t-T)f

A(to) + e tf(T)dT t > 0 (1.30)
0

We also can take the Laplace transform of (1.28) obtaining

-I

X(s) = {Is - A} F(s) (1.31)

where I is the (2nx2n) unit matrix

X(s) = L[x(t)] , F(s) = L[f(t)]

ind :e :ust add the initial condition x at t = 0. We can now indicate,

-pioying (1.30) and (1.31), how uncertainties in the values of ck and kjk,

i.e. in C and K, can change the response significantly.

'e conclude from (1.31) that the eigenvalues of A will determine the

stability of the system, since

-I cof TIs-A}T

.(Is - Al Is-A} (1.32)

(where "T" denotes transpose), which shows that the eigenvalues of A, as

determined by

112s - Al = 0 , (1.33)

provide poles of the Laplace transform of x(t). If we do not know the

elerients of the (2nx2n) matrix A precisely, we cannot unequivocally

state the eigenvalues of A are in the left-half complex s-plane. Even

if we know the eigenvalues of A are in the left-half s-plane, but we do

not know their precise location, then if we add a control system for the

1E

I !
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purposes of controlling our )riginal system orientation we have the pos-

sibility that the complete system might at the worst be unstable or have

very poor control characteristics, or at best have excellent control

characteristics. The uncertainty of how the system would behave cannot

be tolerated in space where adjustment and/or repair would be difficult.

Suppose the eigenvalues of A are in the left-half s-plane su we

know the system is at least stable and suppose the external forces f

contain periodic elements. Then, the possibility of resonance

phenomenon comnes up. n:oticefirst uncertainties in the elements kjk of

K means we are not certain where the undanped natural frequencies of the

system lie; thus, we cannot be certain that some of the si-ple liari;onic

components in the periodic disturbances will have frequencies -,,,ell

separated from the undarped natural frequencies of the system. Second,

uncertainties in the elements c jk of the matrix C means that we cannot

be certain that the forced amplitudes of the system response will be

snlall if the freqaencies of the simple harmonic components in the exter-

nal forces (disturbances) happen to be close to one or more of the

undamped natural frequencies of the system. If either of these situa-

tions occur, some of the components in x of (1.30) will be large leading

ulti-lately to fatigue failures. Examples of past cases where these pos-

sihilities have occurred and caused problems readily come to mind.

We also have given specific examples in the General Introduction

where uncertainties in parameter values make a difference between what

is predicted to occur, ignoring these uncertainties, and what actually

occurs. Thus, the answer to the second question is yes!
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In the sections devoted to time invariant parameters, our concern is to

describe how uncertainty in the parameters influences response and what techniques

are currently available to quantitatively assess this influence. We shall divide

our discussion into subsections that reflect different interests and methodologies.

The two main areas of interest are derived from problems of physics and problems of
engineering. We shall start with engineering.

The most important topic for engineering systems is how uncertain parameter

values influence the accuracy of system response prediction. It often suffices

to know how these uncertainties influence the accuracy in estimating the values

of the natural frequencies and their corresponding normal modes of motion in a

conservative system (C= 0). Since linear systems response prediction depends

upon frequency response or impulsive admittance (i.e. Green's function, impulse

function), our interest centers on:

natural frequ'ncies

normal modes

frequency response

impulse response

In some situations we will be directly interested in the response q.

It is important to note that there are two ways to quantitatively characterize

uncertainty in the parameters. We may simply have bounds on the parameter values.

Alternatively, we may consider the parameters as random variables, described by

their joint probability distributions, or, at least, by their first two moments.

We shall treat both of these characterizations, since each can arise in application.

The broad classes of techniques available to pursue these subjects are:

perturbation methods

Liouville's equation

mean-square approximate systems.

bound determination.

We shall discuss each of these techniques separately, realizing that there

will be overlap.

H

!
J. - *. - -J"".," '. , . . . - . ' - -" " . '. " ". ' " - " " - ' " -" . ^ ' q '
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II. Moments - White Noise Coefficient Case

In this section we shall be concerned with the case that the coefficients

of linear differential equations, contain white noise components. In particular,

we are concerned with Gaussian white noise coefficients. The white noise

{W , tQ[0, -]}, is characterized by the fact that its power spectral density is

constant over the entire frequency domain (-.,w). Therefore, by the Fourier

transform relation between power spectral densities, f(w), and covariance

functions, y(T), it follows that the covariance for the white noise is an impulse

function. Thus for the white noise, f (w) = S and its Fourier transform

(the covariance) is y(T) = 2 S 6(T). It immediately follows from y (T), that
0 w

W(t),W(t+T) are uncorrelated random variables, no matter how small T. Further-

more since formally, we must have E{w 2 (t)}= 2TS 6(0) which is undefined, we see
0

that the white noise would possess infinite power, making it a mathematical

Oi concept rather than the model of a process that is observed in nature. Moreover,

*if we assume that W(t) is a Gaussian random variable, then it follows that W(t),

W(t+T) are not only uncorrelated, they are, indeed, independent random variables.

The question that comes up is, how do we interpret the meaning of differential

equation models of real systems, with Gaussian white noise coefficients? It was

the classic work of K. Ito [2.1], in the 1940's that answered this question, long

before it was of importance to modern optimization and control applications.

Although a thorough development of these ideas is beyond the scope of this

report, we shall illustrate a few of the basic ideas. The interested reader

should consult texts such as [2.2], [2.3] for the fundamental development. The

key point is that the Gaussian white noise, W(t), possesses a representation via

the Brownian motion process fB(t), t E[0,w]}.

An especially readable account of the interpretation can be found in [2.4]

Vol. II , as well as the recent book on narametric excitation by Ibrahim [2.51.

The Brownian Motion is discussed in almost all elementary tests

on stochastic processes.

For <t <t <t, for any {t.} andn, the joint density is
1 2 n1

ti
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B2 2 (B 2)

S  +(B 2 -B,) ( n- )

1 2a2 tl t2 -tl tn tn-Ip(BIptl;.. ;B n t n en n

n/2 n ___00 __tt____ ______

(2Tr a 1t t n t -)(2.1)I (2rr)n/a *t(t 2 -t 1 ). .. (t -tn~ 2.1

The Brownian Motion process, also referred to as the Wiener process after

Norbert Wiener who first made a thorough study of the properties in 1923 (2.6],

and 1930 [2.71, is defined by the class of Gaussian joint probability densities

(2.1). The Brownian Motion process is a Gaussian process with stationary,

independent increments satisfying,

P{B(0) = 0} =, E{B(t) =0, E(B(s)B(t)} y (s,t) =o 2min(s,t) (2.2)
B

Among Wiener's fundamental contributions to the development of this process,

was to determine that the sample functions of the process are continuous

functions on any finite interval, and that the sample functions are nowhere

*. differentiable.

Now from (2.2), we see from the covariance, that the Brownian Motion is

non-stationary. Furthermore, from elementary properties of derivatives of

processes, it follows that the covariance of B(t), is given as

2 yB(s,t)

This result is immediately obtained formally, from

2TB(s t) 2
- Bx2 

EiB(s)B(t):,
s~t 'Jxot

- EB(s)B(t)'I

I
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Upon taking these derivatives of yB (s,t) given in (2.2), we also obtain the

formal relation,

-YB(st) = 2 S(t-s) = Y (t-s) (2.3)

Thus, we obtain the representation for the Gaussian white noise as,

B(t) 7 W(t). (2.4)

Therefore, for systems with Gaussian white noise coefficients, we can replace

the white noise terms with the formally differentiated Browmian motions.

We write the general linear differential equation with white noise

coefficients as,

x(t) =Gx(t) + H liWi(t) x (t) (2.5)
i=l

where the nxn matrices G,{H.} are known, and the {W (0] K= are independent

11 ti a
white noise coefficients, and x is an n-vector. However, since we can represent

Wi(t) =Bi(t), then (2.5) may be rewritten as,

K
x(t) =Gx(t) + I HiB.(t) x (t) (2.6)

i=l 1

As we stated above, B.(t) is only a formal derivative, since as a result of

Wiener's investigations, the Browmian motion does not possess derivatives. The

approach of K. Ito, was to interpret (2.6) as an equation in differentials,

.K

dx(t) =Gx(t)dt + H HdB.(t) x (t) (2.7)
i= 1

The meaning of this equation is via the integral equation,

t ~ K

x(t)-x (a) = Gx(s)ds + f H x(s)dBi(s), (2.8)
a i=l aI

U
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where the Integral in (2.8) is the so-called Ito stochastic Integral and the

equation (2.7) is generally referred to in the literature as the Ito differential

equation.

Thus, upon starting with (2.5) as the formal differential equation

describing a system with white noise excitations, we are lead to the math-

ematically meaningful form (2.7).

The importance of this form lies in the many properties of the Brownian

motion differential coefficients dB(t). In particular, since the Brownian

motion process is a process with independent increments, then for each i,

dBi(s), dBi(t) are independent random variables for s 0 t. (We define the

differential, dB(t) _B(t+dt)-B(t) for positive time differentials dt>O).

Also, as a result of this interpretation of the differential, it also follows,

that dB.(t) is independent of x(t) for every i. We can interpret this1

formally as follows. Through the differential equality (2.7), x(t) is a

functional of {B. (s), s t} for all i. However, since the Brownian motion is

an independent increment process, it follows that dB i(t) = B i(t+dt)-Bi(t) is

independent of all combinations (or functionals) of {Bi(s) st}. This

independence is of fundamental significance. We can see the immediate effect

of this property, when we investigate the mean value E{x(t)}, for the solution

response to (2.7).

By taking expectations directly on (2.7) we obtain,

K
dE[x(t)}=G E{x(t)}dt + I H E{dB i(t)x(t)}. (2.9)

.j i=1

Due to the independence of x(t) and the dB. (t), we can write using the fact

that E{dB(t)} = 0.

E{dB.(t)x(t)} E{dB (t)} E{x(t)}= 0 (2.10)
1 i

Therefore, we immediately see that the mean equation from (2.9), (2.10) is

d
d E{x(t)} = G E{x(t)}, (2.11)

which is immediately solvable as a linear vector equation with constant

coef f ic ient s.

A I.M'. . ' *
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Because of these properties, all moment statistics of the solution

process to (2.7) may be obtained. Perhaps, the most important result of the

properties of the Brownian motion, and the form of the Ito differential

equation, is that the solution process [x(t), te[to,0)}, is a vector Markov

process. See [2.31 and [2.121 for discussion of this deeply significant fact.

Moreover, it was the motivation to represent a Markov process explicitly

that lead K. Ito to study the differential equations that bear his name.

The important tool by which we can set up the various moment equations

is the so-called generator or backward operator for the Markov solution

process of (2.7). We will obtain this generator via the characteristic

functional, an approach that appeared in an important early article by

Moyal [2.8] and is attributed to the statistician M.S. Bartlett. This

approach will be used to obtain the Liouville equation in our review of the

random constant coefficient case, following the approach in [2.91. These ideas were

also applied in a fundamental paper on statistical turbulence theory by

E. Hopf [2.10] and later by the physicist S.F. Edwards 2.1

To illustrate these ideas, we write the development for the scalar case.

The n-th order operators can then be written down immediately. For the simple,

scalar Ito equation (general linear or non-linear) we write,

dxt g(t) dt+h(xt) dBt "  (2.12)

We are interested in the characterstic functional

C x(t,u) = E{eiUX (t)} (2.13)

Upon taking the differential with respect to t of (2.13), we will obtain, upon

a formal interchange of expectation and differential operators -

dt x (t,u) = E{d teiuX(t)}

u t 1 i 2  iuX(t)

E{[iudx(t) + 2 (iudx(t)) +o(dt)] e (2.14)
rA ix)]+I (i )2 2deiUt)t)

iuE{dx(t) eiux(t) ] +2 Edx(t)) iu

+ o(dt).

V



*-26-

Here, we have taken the first two terms in the expansion since, as we shall see

from (2.13) there will be a contribution from the second order term. Higher
k

order terms (dx(t)) , k>2 will all be o(At), and thus will not yield a

contribution.

From (2.13), we have

d tx (t,u) - iu E{[g(x(t)dt + h(x(t))dB(t)] eiux(t)}tx(2.15)

+_I (iu)2 E{[(g(x(t))dt) 2+2g(x(t))h(x(t)dtdB(t)

22

+h 2(x(t)) (dB(t)) 
2 ] eiux(t)

~+ o (dt)

Now, since dB(t) is independent of any function of x(t), as discussed above,

we have from (2.2), for any f(x(t)5,

E{dB(t) f(x(t))} = E{dB(t)} E{f(x(t)} = 0

a (2.16)

E{(dB(t))2 f(x(t)} = E{(dB(t)) 2 } E{f(x(t)= a 2dtE{f(x(t)}

Therefore, we can write (2.15) as,

d Ox(t,u) = iu E{g(x(t)) e i ux(t) I dt

a2  2 2eiUX(t)

+ L2 (iu) E{h 2(x(t)) e } dt (2.17)

+ o(dt)

Finally, we obtain upon dividing by dt, and letting dt 0,

--(tu) E[ug(x(t))+ - (iu) 2 h2 (x(t))] e }IUX(t) (2.18)

i
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We must now recall the elementary fact that

x (t,u) = feiu p(xt) dx,

that is the characteristic function,and the corresponding probability density

function are Fourier transform pairs.

Upon taking inverse transforms of the equation (2.18), using the operator

identity (iu)k -k (2.18) yields the partial differential equation forix

p(X,t),

p )- t) -I 2x)-xt -] 2  x  x t ) ]  (2.19)
2t 2X(2.39)

We recognize this equation !is the Fokker-P]anck equation that has been so

important in the study of Markov diffusion processes.

The operator

-+ 2 2 a .[h :J(x (2.20)
DX2 X2

is referred to as the Forward operator in the literature. See [2.121 as well

as other sources.

The adjoint operator

- ~ 3 (- ) ~ 2 2 3 2
Sg(x + L_ h2(x)- (2.21)x9x2 x 2

is referred to as the generator of the process defined by the Ito differential

equation (2.12).

The generator is the most important operator for diffusion processes

since it always exists. It is known that the forward operator may not exist

for certain Markov processes. This is an advanced concept which is usually

discussed in fundamental studies of diffusion processes [See e.g. [2.13]].I

I
0",.
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It is the generator that is of interest to us. It is easily seen that

for any f(x), from (2.19), since we may write,

.1 Eff(x(t))} f.~- F (x)p(x,t) dx = f(x)as) dx,
dt dt j J 3t

we obtain the equation for the mean value of f(x(t),

dt E{f(x(t))} = E9f(x(t))} (2.22)

The equality (2.22) is a simplified form of what is referred to in the

literature as Dynkin's theorem, [see [2.13], [2.14]]. The apparent

first application of these ideas to structural systems was presented in [2.15],

where stability of the second moments of the linear oscillator with white noise

coefficients was studied.

Considering only the moments mk(t) =E{x k(t)}, we have from (2.21), (2.22),

d m (t) =kE{g(x(t)xk-l(t)}+k(k-l)O2 E{h 2 (x(t))xk- 2 (t)} (2.23)
dt k 2

It is clear that this equation cannot be solved for arbitrary functions

g(x),h(x). But, to our good fortune the linear case is completely determined

by (2.23). Thus, for the linear form of (2.12) where g(x)- ax, h(x)=bx, the

moment equation (2.23) becomes

d ink(t) = kErax(t)x (k-)(t) } + 1-) E{b 2 x 2 (x(k-2)(01
dt 2

which the reader can easily put into the form,

d mk(t )  ka + k(k-l) 2 b2
dt [ 2 b1 nk(t). (2.24)

which yields, [ka+ k(k-l) j2b2]t

E (t) = ik(t) = Mk(O)e 2

for the kth moments.

I
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In fact for any nt h order linear Ito equation we obtain a consistent set

of equations for the kth moments that can be solved exactly. We see this by

first presenting the generator (backward operator), for the general linear

n order Ito equation (2. 7 ). It is obtained directly as

n a 1 n 2-

Z (Gjjj x + - bij(x) (2.25)
Xi-l ij j i- 2 j -

K n
where b (X)- a2 h h xx,

i z rs ir j s r, s

a2 dt- E{(dB (t))2}, and HI' (h')
z z ij

We note that, exactly as for the first order, scalar, example above,

the coefficient of the -- term is linear in x, and the coefficient of the
2i

32 term is quadratic in x.

Hence, there will always be a closed set of equations to solve for the

kth moments.

In fact, we immediately have for the expectation of the general function

f (x l1 (t ) , ...,X n (t ) ) ,

d g{f(xl(t),...,Xn(t))}- E{Yf(xl(t),''',x (t))M (2.26) .

d- 1 ' n

similarly to (2.22).

We look at the classic example, apparently, first studied in [2.15].

This is the second order linear oscillator, with a white noise coefficient,

" (m2
x(t) + 2,>x(t) + (W +W(t))x(t) 0 (2.27)

Putting (2.27) into a linear Ito form, we set xl1=x, x2 =x and noting

that dB(t)- W(t)dt, as in (2. 7), the second order oscillator equation becomes

dxI = Xodt

(2.28)

dx 2 (2"x2 + x)dt - < dB(t) .'0 1
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The generator of the (x,,x 2 ) diffusion process can immediately be written

as

1 
2 2

2 x2 2E~ (t x t

For the three moments m2 1 (t)= E{x ()}, ml2 (t) = E{xl(Ox2(t),
2111 1 2

m2 2 (t)=Ex 2 (t)}, the relation (2.26), for 9 given by (2.29) yields the equations,

(m 1(t) /0 2 0 \ fm(t)\

d m ()-W2 -2cw 1 (t

m2 2 (t) 2 - 2 22 (t (2.30)

which can be solved explicitly.

th
For the general n order system (2.7), one can easily show that the second

moments E{x (t)x (t)} = m (t), can be expressed as the solutions of the
u v uV

differential equations

Z=1 r~,lur vs rs

where u,v=1,2,.. .,n.

Here, we have used (2.25) directly.

nd
Finally, we shall mention a generalization of the 2 moment formula

(2.31) that holds for all p order moments, [2.16], [2.171 for the linear

Ito equation (2.7).

Motivated by the algebraic theory of linear differential equations,

. . - -.- - -.

".neFinallyfine foral gienti-o n d a g izatin oitve n imntr fortha

. ~ asonecate ete or ap whse n coo nen d aie n oiieitgrp h
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vPl. p2 6a, pp ] (2.32

for

n
P = p, Pi >

i=1

The components of x p ] are ordered lexicographically. For example, for
[3]n=-p=-3, the components of x , for

x = ( 2  are, in order,

x

3
x x1

i 3- 22

-2

[ x x x3

[3] Vx 123 (2.33

v3 XlX23

1 3

,.: x2x2

3
x2

2 3

3
x 3

.

4.'2
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The vector x satisfies 11I = I xl p ,where lx I = (x,x) and

more generally, (x,y)p = (x [Py[P]). Furthermore, this concept extends to

matrices through the definition y - Ax. One defines A p  as that matrix that

yields

[P A . (2.34)

For linear systems

x(t) = A(t)x(t) (2.35)

the differential equality

x(t+h) = (I +hA(t))x(t) + 0(h 2 )

holds, yielding from the definition (2.34)

o;"x
[ p ] (t+h)=- (I+ hA(t))[Plx [ p ] (t) + 0(h 2  (2.36)

Upon defining the limit

1 [p] [p] (t).. im h ((I+ hA~t)) A )= [p].
h~o

we now determine the associated differential equation for x[
p ]

-x p ] ( t ) =- A ( t ) x p ( t )  -(2.37)
[p]

In order to relate these ideas back to the original Ito equation (2.7),

one can apply the usual Ito calculus [2.121 to obtain the Ito differential
[P]equation for x as

4.

a
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• r=1 r I
+ E H9rp.xP(t) dBr(t) (2.38

r=r

Applying expectations to the Equation (2.38) immediately yields the

linear differential equation for the pth order moments as

_d E~[p] K 2 ~ Kt 2}pEd x (t)} = - H + H2  E{x (t)}

d It ][_ 2 rr rr --i r = l [ p ]

(p]

- A E{xLP1(t)} (2.39)P

The result (2.39), can also be obtained directly from application of

(2.2:) forY given by (2.25).

Although, in principle, the equations for the pth moments for linear

homogeneous Ito differential equations have been known for many years, the

general form (2.39) can be quite useful.

These ideas extend quite simply to the non-homogeneous case as well.

We mention that the results (2.32)-(2.39), have been derived from algebraic

considerations and more particularly by consideration of the Lie algebras

[see [2.161] generated by the matrices (G, Hi, H2,... ).

Finally, it should be noted that there is no conceptual or analytic

difficulty to obtain the moments for the linear system with external forcing

functions. The general linear Ito equation (2.7) would become,

K
dx(t) = Gx(t)dt + [ H'dB.(t)x(t) + FdV(t),

i i ~

where F is a constant nxm matrix, the vector V is an m-vector of Brownian

* motions that are independent of the {B.(t)}, and are independent among their

components.

A A
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For this case, the generator for (2.40) would be x +.' where x isYx YF x
given by (2.25) and

Fi 2 Xax.

ij=l

m
where a = f itfj),

and F = (fij)"ntxm i

The equation (2.40) is a non-homogeneous equation. The associated moment

, equations that are derived from the addition of F given by (2.41) to x given
by (2.25) would also generate a set of non-homogeneous linear equations. Finally,

we wish to comment on the probability densities for (2.7). We know that the

probability densities for the solutions to Ito differential equations are the

solutions to the Fokker-Planck equations, given by

SP = ,p where (2.42)
Dt

Y*is the adjoint of the generator

Thus, for example, for the general linear equation, the adjoint off x

given by (2.25) is

* = _ n [g iuxj "] + i n 2 [bij (x)(2
x il ix--- i i x (2.43)

i=i i i,j=l J

For the simnle scalar equation

dx(t) = Bx(t)dt + xdB(t), E{(dB(t)) 2 } = 2 dt, (2.44)

9 ' ' :' : : ; : : :
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whose Fokker-Planck equation is

3p(x,t) - _ D[xp(x,t)] +_ 2 [x P(Xt)
at Dx 2 2

we can obtain the probability density explicitly as,

p(x,t) i e [log x -( 0 - 1 2)t] 2/2a2 t

e -ax 
(2.45)

Unfortunately, for higher order linear systems, one cannot, in general,

solve for the probability densities. In certain cases, however, the stationary

N; )density as the solution of

0 p(x) (2.46)
x

can be obtained.

*

0..

.-.. ..
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III. Approximately White Noise Coefficients

As we discussed in II, a white noise is distinguished by the fact

that its spectral density is constant over the entire frequency domain (- , ").

Although the white noise itself is a mathematical abstraction, not

present in nature, there are real or "physical" noise processes that are wide

band. These processes may possess power spectral densities that are essentially

flat over a broad frequency range and then exhibit a rapid drop-off to neglible

*frequency content.

It has been a common procedure throughout the development of stochastic

methods to deal with problems of random excitations to replace such wide band

processes with White noise.

In the case that the wide band gaussian physical noise, n(t), is an

external excitation, such as in the simple oscillator,

R(t) + 2 wx(t) + w2 x(t) =n(t), (3.1)

the typical procedure, over the years, has been to replace n(t) by W(t)

(gaussian white noise) and proceed with the analysis to obtain the solution

process, moments, probability densities, etc. (In this linear case, (x, x)

will be gaussian random variables for gaussian excitations).

For external excitations this procedure can be justified. Difficulties

occured when researchers in random vibrations attempted to make the same type

of replacements for wide band random coefficients. In the random coefficient

case, the replacement cannot be simply made. A deeper analysis is required.

For the early discussions and ultimate clarification of these questions, the

reader is :eferred to [3.1], [3.2], [3.31, [3.4], [3.5].

The basic problem can be illustrated via the first order differential

equation.

x(t) + n(t) x(t) = 0. (3.2)

%"%
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For any "physical" noise n(t), whose sample functions are well behaved

in the sense that they are at the very least piecewise continuous, the solution

may be represented as,

x(t) = xoe 0 (3.3)

where x(O) = x .

The natural question that occurs is as follows:

"If n(t) is a wide band gaussian process and we replace n(t) by

the gaussian white noise W(t) in (3.2), will the solution be given by (3.3)

where n(s) is replaced by W(s) in the integral?"

This is exactly what was done in the early 1960's in order to study

oscillators with white noise coefficients. This would allow us to write (3.3)
"' as

as - W(s)ds - dB(s)
-jo 0:" -B (t)

x(t) =x e x e =x e (3.4)
0 0 0

from the representation (2.4) of the gaussian white noise in terms of the

Browmian motion. We would have to verify that the sample solution (3.4) satisfies

the original equation

x(t) + W(t) x(t) = 0,

or in the proper Ito differential form

dx(t) + x(t)dB(t) = 0 (3.5)

(again identifying W(t)dt z dB(t)).

k, This is simply obtained by taking the differential of the solution in (3.4),

' x -B(t)x e
0

But, differentials of functions of Browmian motion possess a somewhat

different form than differentials of the ordinary calculus.

'C%
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This was, in fact, a major point in the development of Ito's stochastic

differential equations [see eq. [3.6], [3.7]]. Essentially, since

E{(B(t+ At) -B(t) }= C2At, for any At>o, it is known, on a sample property basis

that (B(t+At) -B(t)) 2 : o2At with probability one. Therefore, upon taking

a Taylor expansion

dF(B(t)) = F'(B(t)dB(t) + F"(B(t)) 2)
2!

I. + ... + F (n)(B(t)) (dB(t)- +. (3.6)
2 k

we must keep the (dB(t))2 1 a2dt term, all higher order terms (IB(t))k  o(dt)

for k>2.

This leads to the differential formula,

02
dF(B(t)) = F'(B(t))dB(t) + -- F"(B(t))dt, (3.7)

which is referred to in the literature as the Ito differential formula.

This is the proper relation that must be used to study the calculus of stochastic

differential equations with gaussian white noise coefficients. For more general

functions F(B(t),t), one can show that

o2

dF(B(t),t) = F dt+F dB+- F dt (3.7a)
t B 2 BB

Upon application of the formula (3.7) to the function (3.4), we find that

-XeB(t = -x JBt 2 -B~t

d(x e ) B(t)dB(t) + (t)dt,
0 02

or, equivalently,

dx(t) + x(t)dB(t) - x(t)dt = 0 (3.8)

20

'. But (3.8) differs from (3.5), with the addition of the term - x(t)dt.

!2



-39-

Thus, simply by replacing n(s) with W(s) in (3.3) does not yield the proper

solution to (3.2) with n(t) replaced by W(t).
ft

Thus, xeo- o is the solution to an equation that differs from the
I t

.'- W(s)dsequation for which xoe-JO is a solution. Yet, for the ordinary deter-

ministic calculus, the equation would be the same. Thus, we must look further

at how to study the wide band coefficient case by replacement with white noise

coefficients. It appears from our simple example that the equation would have

to be modified to yield the same analytical results.

?. We can show, simply, how the equation must be modified. Consider the

scalar equation,

dx(t) = f(x(t))dt + g(x(t))dy(t), (3.9)

where dy(t) exists as a physical noise process.
dt

We assume that we can write the solution as

.1 x(t) = F(y(t),t) (3.10)

Thus, we would find

dx(t) = F (y(t),t)dt + F (y(t),t)dy(t) (3.11)t y

* Therefore, we must have by identifying terms in (3.9), (3.11).

F (y(t),t) = f(F(y(t),t))
t

F (y(t),t) = g(F(y(t),t)). (3.12)

Now suppose we replace y(t) by B(t) in (3.12),we set a new x(t) equal to,

x(t) = F(B(t),t) (3.13)U

P 4ee
%i ' ' " a o "o - ' o' "." - "., ,
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2! Upon applying the Ito differential formula, (3.7a) we will have

o2

dx(t) = F (B(t),t)dt + FF(B(t),t)dB + T BB(B(t),t)dt (3.14)

now FB(B(t),t) = g(F(B(t),t)),from (3.12). Therefore,

FBB(B(t),t) = g'(F(B(t),t)) FB(B(t),t)

= g'(F(B(t),t)) g(F(B(t),t)), (3.15)

again from (3.12).

Upon realizing that (3.13) holds, then the substitutions of (3.12), (3.15)

into (3.14) will give us the equation

o2dx(t) = f(x(t)dt + g(x(t))dB(t) + - - g'(x(t))g(x(t)dt (3.16)

We see, therefore, the change in the equations (3.9), (3.16) through the

term

02a2 - g ' (x(t)) g(x(t))dt. (3.17)

Therefore, it is just this term that must be added to the equation (3.9)

when replacing the coefficient dy(t) by the Gaussian white noise 
W(t)zdB(t)

The term (3.17) is a correction term and is usually referred to in the

literature as the Wong-Zakai correction term.

For the general n-dimensional vector differential equations, we will find

that

dx(t) = f(x(t),t) dt + G(x(t),t)dy(t), (3.18)

where x,f are n-vectors, y is an m-vector and G is an nxm matrix, will be

"/ replaced by the equations
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b

2 n m 3 xt,
dxi(t) I t),t) + I I gk(X(t),t) it dt

2k=1 2.=1 k

m

+((t),t)dB (t) i=l,. (xn (3.19)
- £= 1

The immediate question for us, is how will this change the linear

equations with random coefficients that are "almost" white noise. We have

already seen how the simple first order equation (3.2) is modified to obtain the

added term present in (3.8). Our interest, of course, is for higher order systems.

Thus, we can for example consider the case of the second order oscillator

S d x l = x 2 d t

dx2 = -(2Cx 2 + 2xl)dt -xldy (3.20)

which corresponds to

i x+2wx + ( 2+y)x = 0,

where y is a physical noise coefficient.

Identifying terms in (3.18), (3.19) with the system (3.20), we see that

G(x) = = (3.21)

X 1g 2 1

Hence, the correction terms in (3.19) become

L-.i' .. 2 ;g il - 0 , 1

• " gkl )Xk

k= k 0 i= 2 (3.22)

V

,. - ,.,~,, .- , /. ,- . +, .• .. ,- ., . . - ,. ,. , . .. . . .- .- - . "4",
+  

. " %• - . . " %1 " ' " ° ".'
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Thus, there is no correction required. The associated Ito equation is

x+2w+x + 2+B)x = 0

Indeed for the second order oscillator, a correction term is required

only when there is a randomly fluctuating parameter in the damping term.

th
Indeed, for the n order general linear system, there will be a correction

th
term required only when there is a random parameter appearing in the (n-I)

derivative te--ms. No corrections will be required to the linear system equations
thwhen the randomly fluctuating coefficients appear in terms lower than the (n-l)

derivative. The following example illustrates this property.

In exactly the same fashion as above, we can easily see that for the

system

dx = x2 dt

dx 2 = -(2 wx2 +W
2x1 )dt - x2 dy (3.23)

corresponding to

x + (2,+,)xw 2 x -,

the G matrix is given as

G(x) =(3.24)

x2 g21.

Hence, the correction terms become,

il

k=1l x2 i=2. (3.25)

Thus, the associated Ito equation becomes

' ( dyl x~dt

2
dx2 (2-,,x2 + x ) + - x,]dt- x dB, (3.26)2

. : -: A ~ .i. .i.:. " ?. . ? . v; y.v ..... ... , x ',..,. %.



%-43-

which corresponds to

2

[2?+.. + 2 = 0. (3.27)
*" 2

2
Notice, that for the associated Ito equation the - 2- x has a destabilizing

effect on the overall system.

Naturally, we easily see how these correction terms will appear for the

linear system. The important application is that of determining the approximate

moments for the specific system.

For the physical noise coefficient system (3.20), we cannot determine the

various moments.

However, for the associated Ito system, with no correction terms, we have
5-.

the generator

Y = x I (2x2 +x 2 x2  (3.28)

from which we can obtain all moments, as in Section II.

Again for the physical noise coefficient system (3.23), we cannot obtain

the moments directly. However, the associated Ito system (3.26) possesses the

generator

2 2 2- 2
.-- x2  x [(2 ,_- -- )x 2 + x 2 x22 (3.29)

22

from which all moments may be obtained.

A. Finally, it is immediately seen from (3.19) that the backward operator for

the system (3.19), which contains the correction terms is

n 2 n m 3gi (x,t)
-l[f i (x t)+ L g gk(xt)1 k=1 Z= Ik

'5.1

--+ g. (x,t)gj (x,tO
2i j= 1  ,s= l r is rs] x j)

For a comprehensive study of the sample behavior of such physical noise co-

efficient linear systems and their associated Ito systems see [3.81.

%- .- . .
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In closing, we mention that physical noise coefficient systems with small

parameters can also be related to associated Ito systems and their Markov process

Psolutions. These techniques are based upon so-called averaging methods, which
will be discussed in detail in Section V. We shall now turn to a more detailed

discussion of the physical noise coefficient case.
.A%

N,J

N!.
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IV. Physical Noise Coefficient Systems

For the case of linear systems that cannot be in some way approximated by

differential equations with white noise coefficients or approximated by other

methods, there are very few specific results available.

This, of course, is due to the fact that differential equations with time

varying coefficients cannot, in general, be solved exactly. Indeed, unless we

can solve the equations exactly, we cannot expect to obtain moments, nor

probability densities. This is the opposite of the white noise coefficient case,

where moments can be obtained exactly even though the differential equations

cannot be solved.

The question that we must first consider is, what types of ordinary dif-

ferential equations with time varying coefficients can we solve exactly.

The general equation of interest is

x(t) = A(t) x(t), (4.1)

where x is an n-vector, and A(t) is an nx n matrix which contains elements

3 that are randomly time varying.

For the first order case

x(t) = a(t) x(t), (4.2)

we can write the solution as t
[ a(s)ds

0

x(t) = x e (4.3)

whose moment properties may be obtained under certain conditions.

This depends upon the assumptions we place upon the coefficient process
'a(t), t 0 }

It is a rather important point that in general, given the statistical

properties of the a-process, (e.g. the joint probability densities) the

probability densities of the integrated process J a(s)ds cannot be obtained.

I0
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Thus, even for the first order physical noise coefficient differential equation,

we may not be able to obtain even its moments, exactly.

qThe reason here is that we must evaluate f
fa(s)ds a(s)ds

oE{x(t)} 0Exn e 0 x E{e 0 (4.4)

Without knowledge of the probability density for the integrated a-process, we

cannot explicitly evaluate these expectations.
tb

Fortunately, there is a class of coefficient processes for which we can

determine the joint probabilities for the integrated process. This class is,

S.. of course, the class of Gaussian processes. For the Gaussian processes we

know that any linear operation on the process will again yield a Gaussian process.

This is the only general class for which we can make such a statement. Other

processes simply do not allow us to make such a complete statement. Hence, this

is another case in which the Gaussian assumption allows us to make a complete

statement about the solution process.

If the a-process is zero mean Gaussian with covariance y(tlt 2 ), it

immediately follows that the integral, oa(S)ds is also a zero mean Gaussian

process with covariance given as

It1 t 2  t 1 t 2

E {i a(s)ds ft a(s)ds} = E fo dS1 f ds2 a(s1 )a(s2)}

t t

dsI J dos2 E{a(s 1)a(s2)1

Jo dsl Jo ds2 Ya(SlS2) (4.5)

Thus, it follows that the integrated a-process is zero mean Gaussian with

variance

2 (t) = d s2 Ya(sS (4.6)

0 0
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and the desired expectations (4.4) can be obtained explicitly as

E{x 2(t)} = xn E{en }

0 
-

2

n enY _1 2a2(t)-x 0JeY e dy

n

=xg e t (4.7)

where a2 is given by (4.6).

For the non-Gaussian case one might consider an expansion of the

exponential, leading us to the result

a(s)ds k t

E(e E{( a( (4.8).,-JE e} k!(4 8
.'. k=O

NSince the moments of the integrated a-process can be written as

E{(a(s)ds) k- dsI ... ds )...a(sk (4.9)
J' J 0 0 )1

then if the joint moments of the a-process are known, we can in principle

write (4.8) in a series form. However, summing the series would be a problem

of higher order of magnitude difficulty.

Thus, we see that only for the Gaussian assumption can we obtain explicit

results for even thesimpflest first order physical noise coefficient system.

What can be said for higher order systems? The underlying difficulty
'.4 th

here is simply that the general solution to the n order time varying system

(4.1) cannot be written in a closed form. One is tempted to write the solution

as the matrix exponential

-", A(s)ds

x(t) = e o x , (4.10)
o

I

*1
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However, as is well known (4.10) can be the solution of (4.1) only if

a condition such as the commutativity of the matrices A(t) and {tA(s)ds ' holds.

Otherwise, we cannot represent the solution as (4.10). Of course this

N does allow us to study systems satisfying the equality

A(t) = a(t) A0, (4.11)

where a(t) is a scalar random process, and A is a constant matrix. In this

case A(t) and A(s)ds o a(s)d do commute, so that the solution of (4.1)

with (4.11) is given by
" 

ft

SA a(s)ds
0 J

x(t) = e x (4.12)0

This is of course no different than in solving for the solution of the

constant coefficient matrix case. The main distinction being that theIta~s)

characteristic values of the A matrix will pick up factors of { a(s)ds. There-
o0

fore, if A , for example can be diagonalized by the matrix X, then we know

that

X-A X = A (4.13)

where ., is the diagonal matrix of the characteristic values of A 0

Hence (4.13) yields

1% XI  a (s )d s

t t 100

X-IA a(s)ds X A a(s)ds (4.14)
O0 0

0 n a(s)ds
0

N % V-
¢I 2 ." ?,; ':'2 2 ¢,' ;.';,. . ;<Z _£" y", ..'.i.. .< x . 0 -; ),; '. '. ),.%
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which gives us the explicit solution

rt

x(t) X_ X e 3oa(s)ds X x0

xAf(s)ds
- e 

SX- 1  X x (4.15)
-' 0

"0j 

"e nf0
a (s )d s

~e

A It follows that if the a-process is Gaussian, then as in the first order

* example, we can obtain all of the desired statistical properties of the solution

vector process x(t).

Can we say anything specific for more general noise coefficient linear

systems?

There is a class of linear random coefficient systems for which we can

find explicit solutions. In order to describe this class, we first appeal to

our usual first order case.

Let us consider the first order equation that generalizes (4.2), which

Nwe may write as,

dx(t) m
dt cx(t) + d d a. (t))x(t) (4.16)

i1l

where c, fd i are given constants and ja.(t)j are m-coefficient processes

which may or may not be correlated, may or may not be Gaussian, etc.

We can write the solution, with x(O) = x , as

.m r t

.. C t + Z d ai(s)ds
i=l 0 1

x(t) =x e (4.17)
-0 0

Nj
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%

Having this explicit solution, we can therefore obtain statistical properties as

desired depending upon whether the joint statistics of the integrals fa.(s)ds

can be obtained (such as in the Gaussian case).

It immediately follows that if the matrices C, D1 ,...,D are nxn diagonal

matrices,

then, the vector equation

.M

dx(t) =Cxt

dt C x(t) + ai(t)D i] x(t), (4.18)

may be written as the n first-order equations

ra
.,dx. (t) m

= cx (t) + [ d i j a i(t) ] x.(t), j 1,2,...,n. (4.19)
dt j i ij 1J 1

The solutions to (4.19) may be written as in the form of (4.17).

The next level of complexity will occur when the C, {D. } matrices are all1

upper triangular. In this case, the solutions may be obtained sequentially.

Thus for

C1  d d XA

C d i2

C, D= (4.20)

AC in
n

:i

.........
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we would have

S dx (t) m
n = Cn x n(t) + [ din a(t)]x n(t)dt n

dx n C (m

dt =Cn-lx (t) + cn-lXn(t) + [ di(n-) a(t)] xn-l(t) +

[y. dn ai(t)] x (t)
i=in- i n

etc. (4.21)

We see that there is a sequence of first order equations, all solvable.

The first equation is first order homogeneous, all others are first order non-

homogeneous. Again, if all the [ai(t)] are Gaussian processes, then the statistical

properties of the solution vector process x are completely determined.

The next step in the generalization is to consider the case that the

matrices C,{D.} can all be transformed into upper triangular matrices. This would

allow us to reduce the problem to the form we have just considered. This problem

can be expressed in a concise form by means of Lie algebra theory, [4.1], [4.2],

[4.3], [4.41.

We briefly describe the fundamental ideas. A subspace L of nxn matrices

is called a Lie algebra if for all C, D in L, the commutator product [C,D] - CD-DC

also belongs to L. Let L(C,D I ... ,D m) denote the smallest Lie algebra containing

the matrices C, D,...D . This is usually referred to as the Lie algebra generated
y Cmby C, DI,. ..D . One defines the derived series of the algebra as follows.

i
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0
L =L

w 1
L = [L, LIU
Ln
L{ =~ [Ln , Ln ]

where [Lk, Lk] denotes the set of all matrices formed by [Ck ,Dk = ckDk -Dkck

k kkwhere Ck , Dk F Lk

The Lie algebra is said to be solvable if there is an integer N for
N, *which L = {0}. Clearly, an Abelian Lie algebra (where all matrices are pairwise

commutative) is a special case of a solvable Lie algebra, since C, D EEL satisfies

. [C, D] = (0}. Therefore, [L, LI = {0}.

How do these results impact upon our problem for random coefficient

systems? The connection with our discussions above is contained in the

following lemma. [4.5].

Lemma - A matrix Lie algebra, L, is solvable if,and only if, there exists a

non-singular matrix P such that PMP-I is upper triangular for any M CL.

Thus, we see that if the nxn matrices C, D1,...,D m generatea solvable

Lie algebra, L, then the linear system

dx(t) = Cx(t)+ [I a (t)Di x(t), (4.22)
dt =1 i i

can be transformed by setting y= Px where P is guaranteed to exist by the lemma

to vield

dy(t) PCP-i m l
dt y(t) +[I ai(t) PD P I y(t), (4.23)

oi=

i

.. .. . . '- - . ... . . .. .

°,%
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in which each matrix PCP - , PD 1P,... ,PD mP-is upper triangular. It follows

that the solution vector y(t) can be obtained explicitly by sequential

calculations. Finally the x-process is obtained by x(t) P- y(t).

Example [4.2]

41 Consider the second order system

dx(t) [C+Dla (t) + Da(t)]x(t),
dt 1ll1 2 2

where

2 -1
C = a ,DI -, D 2 =,

1 0 1i 0 0

and a1 (t), a2 (t) are Gaussian processes possibly correlated.

It is possible to show that the Lie algebra generated by (C, D1, D 2)

is solvable, with P - 0 i1

We immediately find

pcp - I1 = -- , PD 1 =- D2 -

0 1 0 0 0 1

which gives us the transformed equation

~)
Sdt "~)

0 + a (t) (4.24)

I
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Clearly, (4.24) can be explicitly integrated, giving us the desired statistics

for the vector solution process x=p y.

There is one point that must be made here concerning the Lie algebra

approach. Generally speaking, many of the linear equations that we study in

- mechanical vibrations do not generate solvable Lie algebras.

Thus; the classical oscillator equation yields

C=L 1 D [ 0

_W2 -2Cw 1 0

for a randomly varying stiffness coefficient,

x(t) + 2Cwx(t) + [w 2 + a(t)]x(t) = 0

Even in this simplest case therefore we cannot use the Lie algebra approach.

For general linear systems, one would have to test whether they generate solvable

algebras. This is not easy to accomplish, especially for structures with many

components. For further details one may see [4.51, [4.6].

We shall finally consider what can be stated concerning bounds on the

second moment statistics from a Lyapunov function point of view. We shall follow

the derivation of Infante [4.7] [see 14.81, also]. For deterministic systems

this basic idea was first studied by Wintner [4.91.
th

Towards this end, for the arbitrary n order linear system

dxt_ = (A+ F(t))x(t), (4.25)
dt

We define the quadratic form

V(x) = Tpx, (4.26)

V
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where P is a positive definite symmetric matrix. Clearly if P is the identity,

thenU
V(x) = lix 112, lxi (xi 2 )11/ 2 . (4.27)

We evaluate the derivative of (4.26) along the trajectories of (4.25),

thus obtaining,

dt V(x(t)) = x T(t) [(A+F(t)) TP+P(A+F(t))]x(t) (4.28)

Upon dividing by V(x(t)), we will obtain

1 dV(x(t)) = x (t)[(A+F(t)) P+P(A+F(t))]x(t) (4.29)
V(x(t)) dt Tx(t) rex(t)

Clearly the quotient on the right hand side of (4.29) is quite complicated.

However, by the properties of pencils of quadratic forms [4.10], as well as the

min-max properties of eigenvalues, it is known that

(DP-l) < xTDx < m (DP- ), (4.30)
S xTpx - max

where A m' a are, respectively, the minimum and maximum eigenvalueswee n'max1  -

of the matrix DP . Note since P is positive definite, then P-i exists.

Furthermore, the operator associated with the matrix DP-I can be shown to be

symmetric [4.9], hence the eigenvalues of DP-1 must be real.

Upon applying the inequalities (4.30) to the equality (4.29), we find

that

1 dV(x(t)) < (t), (4.31)

min < V(x(t)) dt - max

4
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where

X min,max(t) = Xminmax[(A+F(t))
T + P(A+F(t))P-1 ].

-:e Upon integrating (4.31) and taking exponentials of each term, we have

I mi(s)ds Xm(s)ds
e < V(x(t)) < e ,

which leads to the expected values

{tmin (s)ds a(s) ds

E{e } < E{V(x(t))} < E{e J . (4.32)

For the left inequality of (4.32), we may apply Jensen's theorem [4.11]

which states that if g(x) is convex (i.e., g"(x) > 0), then g(E{x}) < E(g(x)}.

3 Thus we have from (4.32), the lower bound

rt Xt
EJXmin()ds} j 0min(()ds.3

e ~< Ete o < E(V(x(t))} 4.3

Therefore, we must find

rt i
E t (s)dsl = EO (s)}dso rain )n mrin

For the oscillator x+ 2;.x+ u2 + f(t)) x= 0, we have

dx(t() ) x(t) + x(t) (4.34)

dt
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In the case that P= I, then we have Ia are obtained from, the eigen-

values of the matrix,

( 0 l-(w2+ f(t))

( (2 + f(t) -2C /

These are respectively

r+ '*2 W2 + (f(t)+W 2-1) 2  (4.35)

Hence, the lower bound on the E{ x 112 1, is obtained from (4.33) as

rt _ _ _ _ _ _

e Cwtj E{' 2u2 + (f(s) + w02-)}2 )ds

e < E{II xI2 } (4.36)

By the Schwartz inequality, we can write

E{Ixl1} < E{ x2}
1/2

Thus, it follows that

E{V'CEW!' + (f(s) + w 2-1-)2 } E + (f(s) + 2_1)2}1/2, (4.37)
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and (4.36) can finally be written as

( W-C2u2)t - E{(f(s)+W2-1)2}ds 2

",e fo <EfI x(t)i 2} 1 (4.38)

Thus, we have lower bounds that can be evaluated knowing only the second

moments of the coefficient process.

Similar results can be obtained for upper bounds as well by the same

concepts. For example, see [4.12].

This section contains essentiallv all zeneral concents that allow

N, explicit solutions for the moments of linear systems with physical noise

coefficients. Any other exact solutions are for specific cases. In general

for the physical noise coefficient case, one must approximate. This is the

subject of the next section.

I-#6

I
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V. Approximate Methods

Except for the various cases and examples that we have discussed in the

previous sections for which exact results are available, all other linear systems

with random coefficients must be looked at based upon some approximate method.

These methods of approximation involve expansions in small parameters, asymptotic

convergences in terms of small parameters in particular the various stochastic

averaging techniques, and finally the so-called closure methods in which expansions

in moments or cumulants are terminated based upon some assumed property. These are

the main topics that we will attempt to describe in this section. Since exact

results are few, one can be reasonably comprehensive in a survey. But approximate

results a-re many, therefore, we cannot claim to be comprehensive. Instead, we try

to present those results that are representative of the specific approach.

V.1 Expansion Techniques

As we stated in Sections II, IV, when the coefficient process is a physical

(non-white) process, we cannot separate its statistics at a given time from the

response statistics at a given time. Therefore, for the general physical noise

we cannot, in general, even determine the first moment exactly. We can only

IN approximate. One method of approximation is by expansion. The literature

contains a great many examples of this approach.

Basically the idea is as follows.

For the linear system:

f dx(t)
dt = (A+ F(t))x(t), (5.1)
dt

as stated before, A is an nxn constant matrix and F(t) is an nxn matrix

whose non-zero elements are stochastic processes. We can write (5.1) as the

integral equation, with initial condition x(t ) = x
o

rt
Ilex(t) = P(t,to )x + I (t,s)F(s)x(s)ds, (5.2)

t

21

U r u
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where the transition matrix , is given explicitly as the deterministic matrix

exponential

D(t,s) = eA(t- s ), (5.3)

where (t-s) is a scalar parameter.

A typical recursive approximation scheme represents the solution to (5.2)

as,

xo(t) = ((t,t )x

000
Ft

xl(t) = '¢(t't)x° + jt ¢(t,s)F(S)X(S)ds

* 0

t (5.4)

x n (t) = (t,to)X ° + f D(ts)F(S)xn-1 (s)ds

t
* 0

To a certain extent most approximations to the time varying linear system is of

this form, or closely related to it. An associated procedure is to consider the

expansion in : of the system.

P dx(t) = (A+cF(t))x(t), (5.5)
dt

Upon writing the associated integral equation equivalent to (5.2),

we have

t

x(t) = (t,to)x + E D(t,s)F(s)x(s)ds. (5.6)
t

0

oo
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Now expanding the solution x(t) in powers of c, we obtain the representation

x(t) = k (5.7)
k=0

Substituting (5.7) into (5.6) and identifying the coefficients of the powers

of E, we obtain the sequence of terms xk(t), as

x o(t) - (t,to )x

XI(t) =t (ts)F(s)x (s)ds

x2 (t) t J(ts)F(s)x 1(s)ds (5.8)

*0

* t

x n(t) Jt(ts)F(s)x n(s)ds

• 0

Both of these ideas are quite classical. For example, one can find the

representation (5.7) and expansion (5.8) in the works of Kryloff and Bogoliubov

[5.1]. For a discussion see [5.21. Indeed, this procedure is attributed to Poisson

and was studied further by Poincare in 1892. Naturally convergence is the problem

of significance, especially if E is not small. For c = 1, this has been called

Adomian's method in the stochastic literature. See for example [5.3] and [5.4].

Given such a classical approach, it appears somewhat questionable to attribute

the procedure to anyone currently active.

Of course the objective of these expansions is to obtain the statistics

of the solution process. Following the notation in [5.3] we can write (5.2) as

I

5
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X(t) - IN(t,s)x(s)ds -G(t,t ), (5.9)

00

where

N(t,s) = P(t,s)F(s)

0~~ Dtt)

Defining the iterated kernels N (t,s) as
k

N 1 (t,s) = N(t,s)

t

Nk(t's) = fN(t,xc)N k- 1(-,s)dT (5.10)
k it

0

k 2,3,...

we define the resolvent kernel of N(t,s) by the Neuman series

7(t's) N N(t's) (5.11)
k=l 1

This allows one to write the solution to (5.2) as

t

x(t) = (D(t,t 0)x 0+ f F(t,s)c (s,t )xods. (5.12)

0

In this case, the mean vector Ellx(t)l, may be obtained as

t

Efx(t)i '.(t,t )E~x I+ Ejf(t,s)jD(s,t )Efx ids, (5.13) 1
o 0 Jt 0 0

0
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assuming that the statistics of F(t), and of x are indepenient of one another,

and, furthermore, that the A matrix is deterministic. If the A matrix contains
random constants, then the terms E{ (t,t )}, E{1(t,s)} would appear in (5.13).

Although these procedures are straightforward applications of established

solution expansion techniques, obtaining the desired statistics is not made

truly simpler due to the complexities of the infinite number of terms to be

considered. Expansions of moments using such ideas have been studied by many

investigators. In the modern development of the topic, one can go back to the

works of Samuels and Eringen [5.5], [5.6] who studied stability of the second

moments of systems of the form (5.1) by such expansion techniques, (see also

[5.3], [5.7].

For a general development of this topic, one might look at [5.8]. Notice

that there is nothing fundamentally probabilistic about the expansion methods

above. The so-called Neuman series for integral equations, as well as the

perturbation expansions were developed for classical deterministic equations.

There are a number of papers which deal directly with approximations to

the joint density functions via a sequence of integro-differential equations,

that involve certain smoothing operations.

The first paper along these lines apparently is due to Kryloff and Bogoliubov

in 1939 [5.9]. Subsequent studies appeared in [5.10] and in [5.11]. Also consult

[5.12] for further referenced details.

V.2 Hierarchy Equations and Closure

Under certain assumptions, it is possible to obtain a set of equations

that will yield the moments of the solutions of systems with randomly varying

parameters. However, these equations may depend upon an infinite number of L

variables that render them impossible to solve by finite methods. This is

typical of the type of problem one meets with non-linear systems in which

lower order approximants may be a function of higher order approximants so that %

the equations are not closed. In that case, assumptions are put on the svstem

(which may or may not be justified) which will reduce the infinite heirarchy of

equations to a finite set that can be solved. After solution of the finite set,

naturally the errors in the approximation must be studied. At this time, however,

there is no general statement that can be made regarding the errors introduced.

41' ~
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We illustrate this problem for the case of the oscillator with a randomly varying

spring coefficient. We assume that the random coefficient is generated by filtering

a white noise. Thus, it is a Markov process, or more generally, it is the component

of a Markov process. One of the earliest papers to treat the problem in this way

was [5.13]. Thus, consider the oscillator,

2J
x(t) + 2Cx(t) + [w 2 + y(t)]x(t) = 0, (5.14)

where y(t) is generated by the Ito equation

dy(t) =-my(t)dt+dB(t), (5.15)

where the B-process is the usual Brownian motion. We recognize that the

y-process is the Ornstein-Uhlenbeck process.

Now since y is generated by an Ito equation, then it follows that the

vector (x, x, y) is a Markov process generated by the Ito system

r dX 1 (t) = x2 (t)dt

dx 2(t) =-[2 x2 (t) + ( 2 +V(t))x 1 (t)]dt

dt(t) =-Sy(t)dt + dB(t). (5.16)

Following along the concepts developed in Section II, we can write the generator

L)f the system (5.16) as

2 2 j 2 3

1 2 ''- -2

and obtain the moment equations via the Dynkin formula, (2.22), as in

Section II.
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th
Upon denoting the n moment as

EXl(Ox k tz(t)} = m. (t), where j+k+ =m (5.18)
E1 5 ,2 t

we shall find the first moment equations to be

100 = 010

2*
m010 = -W m100-2 m010-m 1

i 001 : -Em0 0 1  (5.19)

Here we already see that the m0 1 0 equation contains a second moment,

m 10 1 = Ex l(t)y(t)}

For the general case, we shall have

mJkZ = J m.-lk+l, 2 k -w -"-,j +,k- +l,k-l,+l (5.20)+(-

jkk + 2 jk,Z- 2

In (5.20), we see the term m. + which is j+k+ Z+1 moment, one order

higher than mjkZ.

Hence, the set of equations m for j+ k+ Z < n is not a closed set. It is,

instead an infinite hierarchy which we can express generically as

n =Gn(mlm 2, .... n'mn+ 1 ), (5.21)

always depending upon one order higher.
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This n, of course, is not a surprise since the system (5.16) is non-linear

in the variables (xl,X 2,y) through the x y term in the second equation.

The objective of a closure procedure, would be to invoke a property or

assumption that would allow us to write the approximate equations

"n = G n(ml'm2 ... ,mn)" (5.22)

There is no general theory that allows one to measure the errors made with such

closure procedures. However, there have been many attempts to study this

problem. In the study of turbulence, [5.14] contains investigations of closure.

Closure ideas were applied to stochastic eigenvalue problems in [5.15]. Lie

algebra ideas were applied in [5.16] to obtain closed first and second moment

equations.

An investigation of error in the approximation, leads to results for one-

dimensional systems in 15.171 and [5.18].

Two classes of closure concepts naturally arise. They are Gaussian

closure methods and non-Gaussian closure methods.

The Gaussian closure idea is quite clear. Since all moments of a

Gaussian process may be expressed in terms of the first and second moments,

then the hierarchy is essentially closed by writing the equations for the

first two moments. Any higher order moments that appear in the first two

equations are then reduced to the appropriate expressions in the first and

second moments. Thus, for example, for the equation (5.21) Gaussian closure

reduces it to,

n =Hn(m'm) (5.23)

for some new function H , and thereforen

ml = Hl(ml9 m2)

2 H2(ml, m2) (5.24)

becomes a closed set that can be solved in all cases for linear systems.

V
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Of course the problem that exists here is that systems with randomly varying

coefficients do not in general lead to Gaussian solutions. The measure of

error from the Gaussian assumption may be large. This in turn may generate

large errors from the time moments. The reference [5.19] contains further

discussion and references of these ideas as they relate to structural applications.

Non-Gaussian closure techniques assume that all moments of order r> n can

be expressed in terms of lower order moments r < n. One may also express the

non-Gaussian closure assumptions in terms of cumulants. See [5.19] for a

discussion, and [5.20] for a recent application. Cumulant approximations

have been used in studies of turbulence [5.21], and many other stochastic

continuing problems [5.22]. The basic idea comes from the characteristic

function of the underlying probability density for the solution process.

To that end, let us recall that the characteristic function of the

process x(t), is given as

(u,t) = EieiUx(t)}, (5.25)
X

which we can write in a Taylor expansion about the origin as

(iu) 
k

x (u,t) = k! mk(t), (5.26)
k=O

where mk(t) = E{x k(t)}, assuming all moments exist. (Otherwise (5.26)

becomes a finite series with a remainder term).

An equally important expansion is that of log p x(u,t), which we shall

write as

log - (u,t) = (5.27)
x k=0 k! k

The .Nk(t)' are referred to as the cumulants, or semi-invariants of the

x-process. The connection between m and k obtained as follows [5.23],
ke k
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xl=t]

2 2
X2 M2 1,

X 111 3 m rn + 2ra 3

2 2 4

X m -3m -_4m M + 12m -6m4
4 =4- 2 1 3 1 2-

etc. (5.28)

Inversely, we can also write

A 2 +X2
2 2 1

A3 + 3AAX + 1

2 2 4

m + 3X + 4X A + 6X 2 + X
4 4 2 1 3 1 2 1

etc. (5.29)

The cumulants are also a measure of the "distance" away from Gaussian.

For example, if ml =0, we have from (5.29),

m 2 \ = 7

m3 .3

m 4 =3x2 + '4

m5 lx2 3 +15

etc. (5.30)
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But, for Gaussian processes one finds

2
m 2  = 2  

=  )

m3  0
3

m = 3A 2

m = 0

etc. (5.31)

The way in which the so-called cumulant neglect procedure is applied, is simply

to assume that for some K, such that for k> K, we set A k= 0.

Since A k is a polynomial in mk _ ...'Iml it follows that this will

essentially close the moment equations. Thus, for our example (5.14), the

second moment equations are

m 200 = 2m1 1 0

2;0 2 0  = -4 Cm020-2w m ll-2m ll

110 = mo020-2- 110W m10 -12m1201

m1 = mOil - mm1-

01l -2cwm0 -O in1 1 - 102 1mOl

002 = 2 m022 + 2 (5.32)

KQ
'-

',.
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One can use the formula for the characteristic function in terms of the

cumulants

' U~,9 )=Eei(U 1xl1(t) + u2 x2 (t) + u 3Y(t))

¢(UUU3t)= E e ' ' 2  2  3  }

= ex Iprs i p+r

p,r,s=0 p!r!s! 1 2 3 (5.33)

and the fact that

Sj + k+i. a3 __k_ __.__

1 mkZ = Dk 3 Z (uu 2 ,u 3 ;t) (5.34)
jk u 1 j 2 k u3 Z 12

to obtain

M100 100

20 200

Smill x lI I + X1011i 100 + x010 x101 +x001x 110 x010 x100

(5.35)

Therefore, if one assumes that the third order cumulant A is zero the

relation (5.35) would yield

mill m011m 100 + m 101 + m001m 110 + M010m 100 (5.36)

which relates the third moment mil to first and second order moments.
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In the same fashion we could find similar relations for m2 01 and ml02.

Thus, (5.32) along with (5.19) would become a closed set of non-linear equations

to solve for the moments. This, however, would require numerical methods for the

solution. Explicit examples of these concepts can be found in [5.19]. For further

discussion of these concepts one can consult [5.241.

V.3 Methods of Averaging

The method of averaging for classical deterministic equations has its origins

in the works of Van der Pol [5.25], who studied the non-linear equation

x(t) + u2x(t) = E f (x(t),x(t)), (5.37)

where c> 0 is a small parameter.

He assumed a solution in the, now classical, form

x(t) = a(t) cos(wt + ;(t)), (5.38)

where a, satisfy the equations

| (t) = E f, (a(t)) (5.39)

For small c, they are, clearly, slowly varying and become constants as

S0.

The idea was applied by a great many experts in non-linear oscillations

such as Mandelstam, Papalexi, Krylov and Bogoliubov, Minorski as well as others.

However, the method of averaging was not placed upon a firm mathematical foundation

until the major studies of Bogoliubov [5.26].

There are many interpretations of the method of averaging especially, as a

result of the concept playing an increasingly important role in applications to

stochastic problems. For a general survey of the method of averaging for

deterministic systems, see [5.27], for stochastic systems see [5.19].

- , ' . .
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The classic result of Bogoliubov is as follows: Let a system be written

in "standard form", x, f are n-vectors

x(t) = C f (x(t),t), x(0) = X, (5.40)

where f satisfies boundedness and uniform Lipschitz conditions in x for some

region DCRn (R is n-dimensional euclidean space). Furthermore, let then n

limit (time average)

TI

f(y) = 1i f(y,t)dt (5.41)
Tt-T o

exist uniformly for yED. Then, given any ri> 0, and an arbitraiily large

T, there exists an , such that for 0< t < E the solution y of the averaged
0 0

equation,

y(t) = cf (y), y(0) = x, (5.42)

will satisfy,

fl y(t)-x(t) i n , (5.43)

for t E [0, T/E].

Of even more interest is the case that f(y,t) is almost periodic in t,

uniformly for y D.

In that case it is a classical fact that the limit (5.41) exists. Further-

more, Bogoliubov established that the inequality (5.43) holds for tE(O,o ).

Therefore, the averaged solution y(t) becomes a uniformly close approximation to

the true solution x(t) on the entire time domain (0,O).

,%
%B
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This is an especially important result, since it allows us to determine

qualitative properties such as stability and boundedness of the solutions of the

original system (5.40), in terms of the averaged constant coefficient system

(5.42).

This is especially straightforward for linear systems of the form

x(t) = 
F  A (t)x(t). (5.44)

In order to apply these ideas, a linear system must be put in the standard

form (5.44). We can see how this may be done through the following illustrative

example.

Example

Consider the simple oscillator with periodic coefficient,

d-x(t) + (1 + coswt)x(t) = 0. (5.45)

dt
2

we may write this Mathieu type equation as

dx1 (t)

dt = x 2 (t)

dx2 (t)
=-(1 + coswt)x(t). (5.46)dt

Let us assume that w is very large as compared to unity. Thus,

coswt is a very rapidly oscillating coefficient term.

In particular let us assume that

w
0 where O< F, -< < 1. (5.47)

.P .. . .'
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If we substitute into the cosine term

coswt = cos- t = cosw T, (5.48)
E 0

we can define the "fast" time T E t

Upon making these transformations in (5.46) and noting that d _ dUp ndt dT

we obtain the standard form,

_ _ I{dx 1(T)

dx (T) (+oe ~ t

dT C 1 os ) (5.49)

Thus, we have put equation (5.46) into the standard form (5.44),

with

( (1+ cosw t) 0

It is quite obvious that the time averaged matrix A is,

T 10 1\
A= Lim A(t)dt = (5.50)

To- 01 0+

%*!

I.

+.5

, r-
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Therefore, by Bogliubov's result the solution vector y(t) defined by

, 1
dT = Y2

( r)

dy - (T), Y(O) = x(O), (5.51)

will remain "close" to the solution of (5.46) for all time, t E. [0 ,-).

The question now arises, is there a version of the averaging method that

is possessed by systems

x(t) = f(x(t), n(t)), (5.52)

where n(t) is a stochastic process with suitable properties.

The motivation for asking this question is quite clear. It is a

fundamental fact that if the elements a.. (t) of the stochastic matrix A(t)ii

are stationary stochastic processes, then the time average

lim I A(t)dt (5.53)

exists with probability one.

Furthermore, if the elements a. .(t) are ergodic processes, then the

limit (5.53) is equal to Et'A(t)} with probability one. As a result of this

fact, it follows that there should be an averaging result for stochastic

systems.

.!-M- .1.
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We can illustrate this for the case of the inverted pendulum [see Fig. 1],

with base excitation n(t). The linearized equation is

+ - (n(t) + g) e = 0 (5.54)
m 2.

where m,c,Z are mass, damping factor, length, and g is the gravitational

constant.
I ~ ~~~~2L whrL = T V ite
In terms of canonical variables, e, p=- , where L=T-V is the

2e
Lagrangian and , is the generalized momentum, we obtain the equations

=m[m )-l + n (t)0][A(t)+ 2 . c] + mgL J

~m

i = (mZ2)- n(t) (5.55)

as a phase space form of (5.54).

Now let us assume that the random base excitation function n(t) is of

the form,

n(t) = cw(c -It), (5.56)

where r > 0 is a small parameter.

We see from (5.56) that the E coefficient implies a small variance for

n(t) if the variance of w is fixed. Furthermore, the time shift t-- It in w

has the effect of shifting the average power to higher frequency ranges.

Upon setting c- 1 c in (5.56), (5.55), we will obtain, with "v"

denoting d
dT'
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5 < =-tm[(mk) -+w'(T)e][w(r) + 2 .- ] + emgk a

= :i[(m9) -1+w'(r)a], (5.57)

which is in the standard form to apply the theorem of Bogoliubov.

We assume that w'(T) is stationary ergodic with

E{w'(-)} = 0, E{(w'(r)) 21 2 (5.58)

Upon writing the system (5.57) in the form (5.44), we find that

the A-matrix is simply

. [w'(-)+2 c] -m [w'(r) 2 + w'(T) 2 -g .Z
m m

A(t) (5.59)

__-w (T)
mz 

2

whose time average, by the assumed ergodic assumption on the w'(T) process, is

obtained from (5.58) as,

-2"- -m [ 2-g2]
-~ m

A. (5.60)

m 2

%I
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- Therefore, Bogoliubov's theorem implies that the sample solutions of the

original system (5.57) will be close to the solution of the constant coefficient

S deterministic system for time intervals of the order O(i/). We note an

immediate result of (5.60). If a2 > gZ, then A is a stability matrix. Thus

all sample solutions of (5.57) should decay exponentially, aL least for time

intervals of order 0(1/c).

Simulation studies for the inverted pendulum with stochastic base motion

[5.281 have suggested that the solutions might be close for all time if the

solution process is bounded and the power is concentrated in the higher frequencies.

A proof for a specific form of base excitation that is bounded was given by

Bogdanoff in 1962 [5.29]. He considered excitations of the form

N

n(t) = a. cos( .t+ ,.) (5.61)
i=l 1 1 1

where a., } are given constants, all a. are "small" in magnitude,

are "large" and all i- > K for some constant K.

Finally, the j'.} are independent random variables all uniformly

distributed on [0, 2i]. The functional form, with these assumptions does

fit within the scope of Bogoliubov's theorem for almost periodic excitations.

Bogdanoff's proof was based upon linearizations and comparing of small terms.

*Experimental results [5.30] corroborated the theory of [5.29] excellently, even

to the loss of stability when two distinct frequencies i,j become close.

A generalization of the results in [5.29] was presented in [5.31] for

linear systems in the standard form (5.44), where the ergodic matrix A(t)

satisfies,

(a) Sup O(t) M,

rt (5.62)

(b) Sup I [A(t)-P]dt m 5.2)
wrt Po

where P =EIA(t);.
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It was established that if P is a stability matrix, then the solution to

y= ePy, y(O) =x(0), (5.63)

satisfies

lin Sup II x(t)-y(t)l =0, (5.64)
• 6 0 t E[0,-)

with probability one, where x(t) is a sample solution to the stochastic

linear system (5.44).

*. Unfortunately, this result requires the rather strong assumption

(5.62)(b). Although, this is known to hold for almost periodic matrices,

A(t), we cannot state any general statistical properties that will guarantee

this assumption to hold in the stochastic case. These assumptions were also

4. used in [5.32]. For more recent results see [5.33].

We should mention at this point that even if the time average of the

stochastic coefficient matrix A(t) exists, we cannot expect the solution

process to be close to the solution of the ensemble averaged system, if

there are no further assumptions such as ergodicity. This can be seen by the

-: following simple example.

Example. Consider the first order scalar equation

x = Ebx, x(0) = 1,

where b is a bounded constant random variable with Etb} = p < 0.

Thus, the ensemble averaged system is

y=py, y(0) I .
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How do the solutions, x(t), y(t) compare? In particular, what can be said

about

lin Ix(t) -y(t) i Ifin I e~b  e (5.65)"

It can be shown that for a,3> 0, # B, we have by simple calculus,

-at - a- a-B

Sup le -e t=I( ) -0. [ > 0,
t

which occurs at t = -- (loga - logs) > 0.

For our case (5.65), the c cancels out, and we will obtain for b< 0,

b b
b-bt b-P b-PSupte -e P=I( ) - (-) i > 0 (5.67)

tb bt

independent of e!

Hence, the solutions cannot become close as E 4 0, assuming only that

time averages exist!

For the case of the white noise excited system, we can write an

averaging result that relates the stochastic response characteristics to the

associated averaged deterministic system, [5.34].

In particular, for an Ito system of the form,

dx = c(Axdt+F(x)dB), x(O) x (5.68)

where A is a constant or periodic matrix, F(x) is a matrix whose elements

are linear functions of the vector x, and B denotes a vector of Browmian

motions, it follows that the averaged system

N ILZ
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=EAy, y(0) = x (5.69)

satisfies

N, lim Prob t Sup II y(t) -x(t)II > 6}=0 (5.70)

E c+0 t [O, )

for any 6 > 0.

In this case, as before, A denotes the time averaged matrix defined

by (5.53).

K. The effective importance of this result, is that if the structural

excitations are wide band Gaussian then we can treat the system (5.68) for

small c, as the deterministic averaged system (5.69).

Furthermore, the response characteristics of the true system (5.68)

* will remain close to the solution of (5.69) for the entire time interval

[0,").

The question of controlling the true system through the averaged model also

*becomes possible. The control problem is discussed in [5.34] as well.

2, Many averaging methods that have been developed for the study of stochastic

I systems have not taken the view that we have discussed above. The basic

1hilosophy that we have discussed above is essentially to replace the true system

with random excitations by a system that essentially averages out the random

fluctuations leaving, in a sense, the mean system which is deterministic. If

the true and the mean Eystems are "close" for all time, then we can restrict our

study to the simpler mean system response, knowing that it will be very close to

the true system dynamics. On the other hand, the philosophy that drives the work

of Khazminski [5-35], [5-36], [5-37], Stratonovich [5-38] and Papanicolaou [5.39]

1% is to replace the original random coefficient system by one that is simpler

through an averaging procedure. Generally speaking their averaged systems are

close to the true systems in the sense that the probability distributions

generated by the averaged system are close to the probability distributions6: generated by the true system. This is referred to in probability theory as
~weak convergence.
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It differs from the results we have described above, in which we are

concerned with the actual response of the system being close to the response

of the averaged model. This is called strong convergence, or almost sure sample

convergence which will imply that the probability distributions will be close.
The important difference is that from the structural engineering point of view

we are concerned primarily with the actual structural response of the systems.

However, the weak convergence point of view does allow one to obtain probability

distributions for averaged systems, when it may not be possible to determine the

distributions for the true randomly excited system.

To a great extent this approach was motivated by [5-35], where an

averaging result was established for partial differential equations. In

particular, we consider

-t - sL(x,t)u, (5.71)

where L is an elliptic or parabolic second order differential operat

with sufficient regularity conditions relative to the (x,t) variables.

Let

T

L (x) = lim ( L(x,t)dt, (5.72)
0 T+t T J L

be the time averaged operator.

Then, if v(x,t) is the solution to

JV

.4

= L (x)v, (5.73)
3t 0

,%

i
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for the boundary condition

u(x,T E:) = v(x,T c) = f(x). (5.74)

it follows that,

lim Sup lu(x,t-v(x,t)l = 0 (5.75)
6 0 (x,t)E% [0,T/c]

The importance of this theorem for stochastically perturbed systems is the

following; for the Ito system

dx=m(x,t)dt+a(x,t)dB, a = (aij) (5.76)

where x,m are n-vectorsa is an nxn matrix and B is an n-vector of

Brownian motions, we know from Section II, that the generator is given

as

, n 1 n 32 5 7 ( )

S(x' 2 .+bi,(x't) - x5.76(A))i Dx ij=l xl

where

n
bij =k Oik(x't)ojk (xt).

It immediately follows that the generator for

dx = Em(x,t)dt + /T a(x,t)dB (5.77)

becomes c9?, where is defined by (5.76(A)).

N
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Hence, the theorem states that the probability distribution generated by

dy = cm(y)dt + VE a (y)dB, (5.78)

'Y where

T

m(y) = limn i m(y,t)dt

T

b ij(y) = l i m T 0 bJ(yt)dt, (5.79)

(j(y) is obtained from (bij (y)), is close to the probability distribution

generated by (5.77) on the internal [0,T/E]. Examples of this approach for

non-linear systems may be found in [5.37].

Perhaps the most interesting form of averaging methods can be found in

U [5.36], [5.38], [5.39]. In a sense these constitute an extension of the

central limit theorem, for diffusion processes. We shall mention the result

in the form stated in [5.36] (which puts the results of (5.38] on a firm

mathematical foundation).

Consider the standard form,

z(t) = EF(z(t), x(t), t), z(O) = z (5.80)

where z,F are n-vectors, x is a vector stochastic process, where for each

component F. of F, we assume that there is a constant C, such that

IFi < ID2Fi

I I C 9Z k (5.81)

j uniformly in (z,x,t).

%
kik& U-
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.1 It is assumed that the x-process possesses the strong mixing property.

This essentially means that as time intervals [O,t], [t+s,-) become

. further separated (i.e. as s +), events defined on the x-process, over

these two intervals, will become independent.

Finally, it is assumed that E{F(z,x(t),t)}= 0, for fixed z, and the

following limits exist uniformly in z,

T ° 0 0 l

T

T li J 2! FizxrlZr)j .(2 b.) = (z)(82
Ti o ai3~

T 1

liram d 2 E1,F (z x(T 1),T )F (ZX( 2),T) 2 a ..(z). (5.82)

Under these conditions, the process z ()(T) defined by

z(E)(7) = z(T/2 T = 2 t, (5.83)

IS converges weakly (i.e. in distribution) to a diffusion process whose generator,

or backward operator, j, is given as

n n

= ,jl b. (5.84)

i
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Since we can always associate a white noise coefficient, Ito, differential

aN equation with the generator (5.84), then it follows that the statistics of the

solution process of (5.80), will converge to the statistics of the solution

*process of

dy = b(y)dt + G(y)dB, (5.85)

where the vector b(y) and matrix G(y) are determined by the (bi(z)),(aij (z))

of (5.82).

One important note, the convergence is weak convergence. Therefore, we

cannot say that the actual sample response behavior of (5.80) will approach

the response of (5.85), we can only say that their statistical properties as

governed by their joint probability densities will become close as E approaches

zero. An extension and further development of these ideas are due to Papanicolaou,

[5.39].

The following example of (5.39) is illustrative of the procedure. For

j further applications see [5.40] and [5.19].

Consider the undamped oscillator,

x(t) + (2 +tn(t))x(t) = 0, (5.86)

where the n-process is bounded, with covariance y(T). We can put

(5.86) into the usual phase-space form as

( ) ( 2 ) ( ) +nt) 0 x2  (5.87)

A() +tNt

2U_
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Upon applying the transformation

zI x
-At ,(5.88)

z z2 (x2

noting that the matrix exponential e -A t will generate trigonometric terms,

the equation (5.87) may be written as

= cn(t) [z1 sin2t + z2 sin2wt]
• z2

z
z n(t) [-z cos wt - sin2wt], (5.89)

21 2w

Cne final transformation,

rr
z1  e cos6, z2  -we sine, (5.90)

transforms (5.89) intoI

=cn (t)G(e,t)

= cn(t)H(9,t) (5.91)

where G, H are trigonometric polynomials in (e,t). Therefore, G,H are

bounded and the averaging theorem of Khazminskii-Stratonovich-Papanicolaou

can be applied to obtain the generator

I
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b 92 b 2 3
-2 -- + b - + (a +-) +5 9 2
2 r2 r2 3a (5.92ilr

where from (5.82) one obtains

S(O) b re, c im [-2w)] (5.93)

a = w-- 4 ,~~ 4 c=wmrS(w

with

S() = y(T)e iWdT.
~0

Thus, the second moment approximation to E{x2(t)} on the internal [O,T/c 2]

is

L22

Ex2 (1 =I exp{2- [ReS(2w)- 2S(O)]F 2t}cos(2w- E ims(2w))t

+ I exp[wReS(2w)E 2t]. (5.94)

+2 2

We can further note that the generatorY given by (5.92) implies that

r, processes are independent. (Since9 - r +e)" Therefore, we can study

the r-process through

2

92r b 53
Y 2 2+ b- (5.95)
r 2 2 Srj r

p.,.4

.1.
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whose associated Ito equation is

dr = bdt ± vb dB. (5.96)

Since the constant term b is positive, it follows that

lim r(t) = with probability one. (5.97)

t tC

This will imply that (zl,z 2 ) and therefore (x ,x2 ) are growing in an

unstable manner on the internal [0,T/ 2].

This concludes our discussion of averaging methods.

LN
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VI. Perturbation methods*

Consider, for example, the rth natural frequency wr of a system.

Assume the parameters depend upon random variables X, ... , X . Then,1 m

we seek an expression for w r' now regarded as a random variable, in the

form

'1 m m m
W r =W + E X + E E X X X +
r -r ~ ii i-li-i

where the Xi are regarded as small perturbation terms, w represents the

rth natural frequency of the mean system, and the Xi. XiJ, ... are to be

determined. While some authors replace Xi with eYi , C being the

perturbation parameter, we shall not usually do this. Once we know the

i' Xij '...9 we can obtain statistical properties of w or any other

quantity of interest. Let us consider a general formulation of this

problem, considering natural frequencies and normal modes first.

, Zarghame [271 sent one of the authors a method of this class which

Iz. appears well suited to computation and which makes a useful suggestion

on how to introduce random parameters that merits attention. This

method has never appeared in print in so far as we know. Therefore, we

shall write out the details in order to have it before us.

We are concerned in this subsection with the free motion of a

conservative system. Thus, in (6), C - 0, fl M 0. Now the elements in

the symmetric stiffness matrix K are determined by the bars, beams,

columns, joints, etc. making up the structure. The uncertainties in

* References in Sections VI-IX are given at the end of Section IX.
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the structure reside in these elements. Let there be m structural

elements in the structure, and let the stiffness matrix of the ith

structural element in terms of q1, .... qn be

Ki = (1 + Xi).K± , i = 1, ... , m , (6.1)

which produces the (nxn) random stiffness matrix

K = EK - {K k} . (6.2)
tj

The random variables X1. ..., X describe the uncertainty present in the

structural elements and we assume

EXi = 0 , Var X, = 2 (6.3)
i i

K is the mean stiffness matrix of the ith element, K = K T , i.e. K is

symmetric in the Kjk , Kjk is the random stiffness element corresponding

j to qj and qk' and we assume masses of the elements do not change. The

advantage of (6.1) and (6.2) is that statistical dependence of the Kjk

is brought in a straight-forward manner. We note also that we can write

(6.2) as

K K +X , K - EK (6.4)

which gives 
also

EK - K and 3K K (6.5)

where K is the stiffness matrix of the structure with each number taking

its mean stiffness.

We can now write (1.26) as

Iq + Kq = 0 , (6.6)

I
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where q is the (nxl) column vector with transpose

qT = {ql' ... qn n (6.7)

Assume normal mode motion

q - a cos(wt + *) (6.8)

with a the (nxl) column vector defined by

a = {al, ... , an} . (6.9)

Then, substituting (6.8) into (6.6), we obtain

(K - w 2I)a - 0, (6.10)

where again I is the (nxn) unit matrix.

The squared natural frequencies w2 are determined by the n roots of
r

the equation

detiK - w211 - 0 , (6.11)

revealing that the wr and w are random variables since K contains
r r

random variables. Let the random mode corresponding to w be the (nxl)

column vector a . Then we can write~r

I2

(K - w I)a 0 , (6.12)

with the usual orthogonality relations

aTla = 0 , aTKa =0 if s * rr a r s

aTIa 1 , aa w2 (6.13)
r r r r r

where "super T" denotes transpose.

We are now interested in expressing the random variables w and a~r r

in terms of a series in the random variables Xi The expressions we

M
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seek will be power series in the Xi . Notice that in this formulation wr

and a are regarded as functions of the uncertainty in stiffness in eachr

individual structural member.

Differentiate (6.12) with respect to Xi:

(K - 2w atr I).r + (K-W 2 1)-3 -0. (6.14)

Next premultiply (5.14) by aT obtaining
r

aw
ar(E- 2w _ r I)ar - 0 , (6.15)

i

since by the symmetry of K (K KT ) and (5.12)

a(K- W2 1) - 0.
r r

Thus, with the last two of (5.13)

r 1 T (6.16)
FX, 2w r;-i'rXi 2r

This is to be evaluated at X= ... X = 0 (i.e. X = 0); we obtain1I n

3Xo = 1 aK a , 
(6.17)

where the underbarred quantities are to be evaluated for the system with

mean stiffnesses. We note that (6.17) give the sensitivity coefficients

[19,25] of w with respect to the X
r

The ak, k - 1, ... , n span the coordinate space; hence, we may

write

3a
r (j

(6.18)" TX- ri

bWe substitute (6.18) into (6.14):

I
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3w

(K - 2w r I)a + (K - W2I)E(i) 0 (6.19)
Zz1 r 3X r r i ri aj

Now premultiply (6.19) by a , obtaining

T(K - 2w r )a + T (K - 2 . )a'k(Z 2 :i r aXi I~ r  k r i ri i

or, for k * r and with the use of (6.13)

2 2 O(k) _a T Q

k r ri k-j r

Differentiating the next to last of (6.13) with respect to Xi gives

T a

a 5X 0r

which on premultiplying (6.18) by aTI then demonstrates that (r) 0.
r ri

Thus,

Ta
-(k) -- r k r

ri w 2 w2 ''

k r

(r) = 0 , (6.20)

and hence from (6.18)

ar k i a
aX = Z 22 k (6.21)

J r k

where the prime on Z means that j does not take the value r. When

evaluated at X - 0, we have

a = 0 2_ 2 (6.22)

j - -

where again the under barred quantities are evaluated when members take

agai-ar
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on their mean stiffnesses. We note that (6.22) gives the sensitivity

coefficients [28] of the mode shapes with respect to the Xi.

Next differentiate (6.14) with respect to X :

aw aw a 2W aw i
r2( r I +r 5 )a(.3
ax )Ira X + (K -2w ~- I) -- (.3

aw r aa r2 3 2ar
+ (K -2w r I)- + (K-wI) =0.

;-j r 3X ax r aX3 x

Next employ (34) for 3ar/aX and Da /aX in (36) and premultiply by aT'

these operations yield

2

-2( aw a r W r )aTIa + ,a (k)aTK a(6.24)
a2 ( r a a r r k ij r-i k

3w
-2w r (k)aTa (k)aTK

r 3X ik ij r k k ri r-j k

-w awI_-(k)aTa

Since by 
(6.13) and 

(6.20),

O(k) aT_ = z(k) aTla =Ik ri i k k rj r k

and by (6.20)

u (r) 2 2 aT a =(r) 2 2
ur-K-j k kj k),' arKi = ki k-wr)

we find

r 2 [Er(1(k) (r) (k) (r) 2 2

-ax ax ri akj +0rj aki (k-u r (.5

aw aw
-2 rk'-2 ]5XY-

or at X =0,

-J

-:.1. % . . . . % ,., , , % ,, . - .-, -. 'f . .', " ,, -, . -- ... -, ....,- . .-
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2
( w (k),(r)(Ck) (r) 2 2

) , k,2 rj )QrJ k.) (6.26)
k

aw 3w
-2 (-i) (-Li

To go further, we must first evaluate a2 a /aX ax. Let

2
r = EO(k)

ax kax r , (6.27)

since as with (6.18) the ak span the coordinate space. The substitution

of (6.27) into (6.23) yields

aw aw a 2 W w a
-2( r + w r )Ia + (K-2w r rI) (6.28)

ir aXia

(K w 3a 2=
Z4 + (K 2w r rI) + (K-wI)8 (k) a = 0

+r r,ij k

Premultiplication of this equation by a , I * r, and the employment of

similar relations as used to obtain (6.25) ultimately yields for I * r.

1 i 3a

+ a I_(-2w r) rXi
I1:-j r DX a

If we differentiate the equation before (6.20) with respect to Xi. we

find

a2 a a a
aTI r
r T r r

Then on premultiplying (6.27) by aTI and employing this relationship the
r

result

% ~ 'p.'..(' * %% h
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S-(r) r (6.30)
i,ij 5 - i

follows. Equations (6.29) and (6.30) can now be evaluated at X = 0, and

we obtain

S2a
S ri(k) . (6.31)

We could rewrite (6.29) and (6.30) employing previously determined

expressions for the first partial derivatives contained therein but this

is not particularly helpful. The procedure for going further is

straight forward but we shall not write out the details in order to

conserve space. Let us summarize our results up to this point.

. We have for the random variable

aw1 a2
r -r + Ei o. Z(-+ - ) i 1  ax ax )oXiXi + (6.32)

i iij i j

where the partial derivatives are supplied by (6.17) and (6.26). We

also have for the random variable

3a a 1 2 ar

a r= ar + Z(-x r ) Xi + (aX X )io j + , (6.33)r -r ~i ° I  + i j  i r .

where (6.22) supplies the first partial derivative, and (6.29), (6.30)

Ssupplies the derivatives in the double sum. Before looking at the

statistics of w and a let us consider how the K and K are computed.
r r LA

Consider, for simplicity, a plane frame consisting of pin-ended

straight bars. Let the 10t h bar connect joints 13 and 19, for example.

Let this bar have length 10 , mean area AI0o mean modulus E 0, and mean

direction cosines X 10 and p 10' as shown. Let the elastic displacements

Ala ipaeet

-
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at the joints be (u13, v13) and (u19 , v19).i~~ V19u1

19 u10
10 T-.

V _____ _____ __ 410 Y1

U x4,13 1

The mean elastic potential energy stored in the bar is

1 A10E1 62

V =I 1 0 E10 ' (6.34)

where to first order in small displacements

610 = (u19 -u 13 )A 10 + (v 19-v13)V10 (6.35)

The substitution of (6.35) into (6.34) gives, on arranging terms, K1 0

columns

U13 13 •.- u19 v19

AE_ 2  AE AEX 2  AEXU
u 13  1 1 "1 1

v AEX A~ 2 AEAVALj
13 1 1 - 1 - 1
* . ...

rows =K10, (6.36)

AE 2  AEXj AEA 2  AEXUI
u1 9  -1 I 1 I

_ AE- AEy AEXu AEu2

v19 1 -1 1 1

where all other entries in the KI0 matrix are zero, and, hence

! 1
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K10 X 1 X 0)K1 0 . (6.37)

Thus, 
according 

to (6.2)

m
K- ZK . (6.2)

i-I i

Note that X1 0 represents the combination of all the random variables

that may enter A10 , E10 , 110, X 0, and U 0, assuming uncertainty comes

only from the bar and not the joints. If the major share of the

uncertainty in stiffness of bar 10 comes from the joint connections,

then X10 must describe this fact; in this case, X1 0 may be dependent on

Othe random variables associated with those bars sharing the joints with

bar 10. Finally, it may be advantageous to introduce random variables

associated with only joint behavior if its behavior has a substantial

influence on stiffness of the structure. We conclude from this brief

discussion that the X1 , ..., X may be independent random variables if,

for example, only bar stiffness need be considered and the bars do not

interact with each other; however, it is possible the X1, ..., X10 may

be dependent if the bars interact through joint behavior. Equation

(6.36) demonstrates that by attaching random variable to physical

element's stiffness coefficient, statistical dependence in K is easily

0included whether or not the X1, ..., Xm are dependent. Let us consider

O the statistics of w etc

Consider equation (6.36) first. We have, on taking expectation,

2
r

E w w + (a )E-- )fXX + .Z.X.(6.38)
r -T 2E X o.

ij i j O i

Even if the X's are independent E{w I * w-i, since the EX * 0 terms are
r T

still present. Now square (6.32) and take expectation:

pa
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m 2 -2 + 2w. EE r a EXX} (6.39)

+ ZZ xr (a {)0EX.iX.}
Ell °Aj o 2~ o

E~w}= +2w

aw aw

r r

+ E)r ( }- E{r )6.40X X)
+ j~ a ax 1 r ~ai i ~~

We can now approximate Var w r it is defined as

Var w2 r E~w2 } [E~w 112] (6.40)

Thus, it is a straight forward task to approximate the first two moments

of W .

If we extend (6.32) to cubic, quartic, ... terms in the Xi, then

(6.38) and (6.39) would contain additional terms. How far we should

continue this process will depend on relative size of the terms

containing E{Xi X }, E{XiXjk}, etc. and what information we have that

would enable as to evaluate these expectations. It is not usual that we

can evaluate any more than E{XiXj}.

Let us consider the determination of the distribution of w . To do
r

this, we require the joint distribution of X1, ..., Xm; denote the joint

probability distribution by fm(xi, ..., x ). Then,

F (w) = P{w r < W} (6.41)
r

- f...ff (x 1 , ..., xm)dx1  .. dxm

where the multiple integral is over all xi such that w r w, and where

from (6.32),

U< ..
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W (Xl..'X W+-( X + I Zawr )X +..(.2
1'r m T X a+io TZriax ax i o i j

Evaluation of (6.41) is a formidable task even for m reasonably small.

This paragraph is thus largely cultural in so far as practical

application is concerned.

We have put in this detailed treatment of Zarghame's method since

it is not in the literature and appears useful as mentioned earlier. In

particular, we note that it gives sensitivity coefficients for natural

frequencies and correspondence normal modes plus series expansions for

these quantities in terms of the random variables X1. ..., X that1' m

define the uncertainty present in the stiffness matrix K. Moments of

the quantities are easily obtained, but it is practically impossible to

obtain distributions for the natural frequencies and corresponding

normal modes. For confidence interval location and size for a natural

frequency, for example, we must approximate using

E{wr} ± 3\1Var w T (6.43)

as a rough indication of a 99% confidence interval. This interval gives

us some idea of the spread in a natural frequency and it could be

employed to make reasonably sure that no steady excitation frequencies

were contained therein for all w . Alternatively, we might employ the
% i r

signal to noise ratio

~E~a r I
r (6.44)

\Var wr

to obtain an idea of how important stiffness uncertainty is for natural

frequency; if (6.44) is greater than 20 or 30 say, we would regard the

!.

3 "I ' Z) ' ' ' , ' ' - " ." . .. .. ' -
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location of w as deterministic; on the other hand, if (6.44) is lessr

than 5-10, it might be unwise to ignore this level of variability in the

location of w r, depending, of course, on the consequences of such

uncertainty.

Next, let us consider frequency response. The Fourier transform of

(1.26), with the unit mass matrix I replaced by M, is

(K - w2M + iwC)Q - F , (6.45)

Iwhere

iQf etdwe F - f feiwtdt . (6.46)
qe2w, 2wta

Let the (nxn) matrix

(K - c2M + iWC) = Z(M) = Z . (6.47)

I The inverse of Z, written Z-(w) = Z- , satisfies

ZZ- =Z Z-I . (6.48)

Writing (6.45) as

ZQ - F , (6.49)

we find on using (6.48) that

Q Z F (6.50)

where the explicit dependence of Q, F, and Z- I on w is not shown.

The matrix Z- I is called the frequency response matrix of the

system. The physical meaning of Z-  is as follows: write

(w)I - {(1 )
then the element Z-1

te is t he complex response amplitude at q due to a
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unit force (with proper dimensions)

Ii~t
e

acting at qk; i.e.

Z-(w)e iWtjkt )e

is the response at q (output) due to the above force at qk (input).

The symmetry of the matrices M, K, and C establishes the symmetry Z-
T -1

Zkj or (Z-I  = Z In a lightly damped structural system, when

amplitude IZ-1(w)I is plotted as ordinate against w as absicssa, sharp

peaks will appear in these curves in the neighborhood of natural

frequencies of the undamped system. This means that resonance (large

amplitudes) occurs in at least some of the qj due to this force at q.,
k

3 when w is near to one of the undamped natural frequencies of the system.

Put another way, if we regard the system as a mechanical filter, only

frequencies close to the undamped natural frequencies where there is a

peak in IZj1(w)I will show up in the output q for the input q

Knowing Z- (w) we obtain the response vector q by taking the

inverse Fourier transform of (6.50); thus,

q - j eiw t Z-l(w)F(w)dw . (6.51)~--

If the excitation vector f is a wide sense stationary random process, or

if f is periodic, Z- () is also the quantity needed to obtain the

response q. Hence, our interest in Z- 1.

-1The inverse Fourier transform of Z- (w) produces the impulse

response matrix H(t), a (nxn) matrix:

I
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H(t) f eiwtZ- (w)dw , t ; 0, (6.52)

-0 O0, 
t <O.

CAThe element h jk (t) is the response at q when a unit velocity is

produced only at qk" for ql = ... q n 0 at t = 0. Again by symmetry,

hjk = hj. By the convolution theorem of Fourier transforms, we may

replace (6.51) by

t

q f H(t-T)f(T)dT . (6.53)
0

Equation (6.52) shows that the impulse response matrix H(t), which is in

the time domain, is equivalent to the frequency response matrix Z- (M),

which is in the frequency domain.

We noticed, while writing out Zarghame's expansion method for

3 natural frequencies and normal modes, that it is possible to extend it

to include frequency response.

We assume Z is given by (6.47):

Z - K - w2M + iWC . (6.47')

Let X1, ... , X be the set of random variables that describes them

distributions of member properties as contained in K, M, and C. Now m

is the total number of distinct sources of variability in K, M, and C,

which may be bigger than the number of members in this case. (For

example, parallel acting but distinct sources of damping and stiffness

in the same number would require two different X's.) We recall that

before m equals at most the number of members according to Zarghame's

formulation.

1

I
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We seek an expression of the type

z z E 1 L ( + ... . (6.54)
Z a (.-)- - j 2 ax -ax.. Xj

We also seek a simple method for evaluation of the partial derivatives.

Consider

ZZ-  = I . (6.48')

The differentiation of this equation with respect to X gives

az Z-1 }z-1
xZ Z-- + x--2- o ; (6.55)
j j

premultiplication by Z- I produces

az- 1  -1 az -1- Z z . (6.56)
j j

Since by (6.47'), noting that w is a parameter,

az= K -~ M + iWC (6.57)
jx -:j -j -j

we now find

(aL) ° M Z- (K - W"2Mj + iWC ) , (6.58)
aj -j - j i

where under bar means evaluation is for the system with all member

parameters taking their mean values. Equation (6.58) is the sensitivity

coefficient of the matrix Z- .

Next, the differentiation of (6.55) with respect to Xk produces

a 2 z  1 a - 1 Z az-1 2Z-1

ax k- + -+ z 0 (6.59)

Again, premultiply by Z"I and rearrange to obtain
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a 2Z- I M Z-1 2 - Z1 az -1  -1 Z az- 1
5 -z TXT 3 K - Z N T Z(

We now use (6.56) and (6.57) to yield

a -1 -1 2 -1 ( 2 -1
( +Xj)o -(Kj-w2M +iC)ZK -w (6.61)

X ? - ~ -i - i-j V--k)

since also by (6.57)

2Z

2z =0 . (6.62)

It is straight forward to obtain the higher derivatives of Z- . Thus,

(6.54) can be carried as far as needed.

The first obvious advantages of this formulation is that it applies

to any type of structure with variability in K, M and C. Second the

needed information is contained in the system with mean elements only;

once this information is in hand, everything else follows. Because of

(6.62), the next differentiation of (6.59) with respect to Xl, say, will

have no second or higher derivatives of Z, and hence, to proceed further

is not difficult. It follows that this formulation appears attractive.

Convergence requires attention, of course. Further, numerical

computational ease must be established, case in [44] although the ideas

there expressed are interesting. Normal coordinates?

Randomness in parameters can be introduced into the coefficients in

K, M, and C, or through structural elements as suggested above, or by

assuming that the natural frequencies are themselves random variables as

in (35, 36].

The purpose of this short digression is to emphasize to the reader

- !*=a
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that the choice of the equations of motion merits careful consideration

so that what is important in a problem is included. Let us now return

to the above references [1,9,11,21,24,27,28,30,31].

Lord Rayleigh [1] was not interested in our topic. However, he

did, for a different reason, find formulas for the deterministic change

in a natural frequency and corresponding normal mode when the

coefficients in T and V (in the normal coordinate formulation) are

subject to small deterministic changes. His formula for the changed

natural frequency is (in our notation)

k +6k n (6k -W2 6m )2

2= -r rrE, rs-S rs
r m +6m m m ( 2

s-r --s

where s * r in '. Randomness can be introduced by replacing 6k andrs

6m by small random variables. The first term represents the change inrs

W due to change in mass and stiffness without changing the mode shape;r

the second term is due to the change in mode shape. This formula is not

used today, since changes in parameters in the normal coordinate

formulation are not of direct concern. We bring it in because it shows

that this master of small iteration was aware that small parameter

changes may alter w2 by large amounts, which is of concern today.
r

Reference [9] is concerned with the sensitivity coefficients of the

buckling load of plates with random thickness and [] discusses the

vibration and buckling of a column with spring supports and axial loads

treated as random variables and with material and geometric properties

considered as correlated random functions. The key formula in [9],

attributed by the author to Jacobi, is the same as (36.17), which is the
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'p

interesting point. Reference (31] employs a perturbation method (only

linear term in (6.32)) for eigenvalue change; the interesting point is

that a Monte Carlo simulation is employed to check the analysis. The

computer simulation is briefly described. The results from analysis and

simulation diverge as the variance in the parameters increase and this

is disp- ved graphically.

References (21,24,28,311 employ either sensitivity coefficients or

linear term perturbation expansions (first two terms on right of (6.32)

and (6.33)) to examine influence of random parameters on natural

frequencies and normal modes. Their techniques are in the same general

form as given above following [271. Except for the last, randomness

resides in the terms in K, M, C; in the last, the component mode

synthesis method [16] is used directly to derive the perturbation

equations, which makes this paper [311 potentially interesting to those

confronted with an actual problem, and hence randomness may reside in

the structural elements. Numerical difficulties in carrying out the

computations are discussed in [28] and [301. Reference [31] mentions a

computer code of NASA.

The linear chain geometry assumed for the physical system in [11]

makes it possible to employ a different technique to derive the

perturbation expansion than described above. This technique employs a

transfer matrix method [68,69] and it is applicable whenever a

The references [1,9,11,21,24,27,28,30,31] address the eigenvalue

(natural frequency) and eigenvector (normal mode) problem in structural

systems by perturbation methods. Before discussing methods or

techniques involved, it is important to understand at the outset that

" " " " * d. , '"' ' - . ' " ' ' ' " " ' - -. . • m .-
-

.- - ,", -' " - " - " - . "
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the geometry of the structure, how its equations of motion are

assembled, the final mathematical form of the equations of motion, and

how randomness in parameters is introduced have a profound influence on

the nature of the results obtained.

A structure's geometry can be in the form of a linear array (chain)

of elements that may, for example, consist of simple harmonic

oscillators strung together in a line, beam segments continuously

connected at a sequence of supports in a line, etc. The geometry is the

simplest possible in such arrangements. Plate or shell type structures

have a two dimensional grid-like geometry and are next in order of

complexity. Finally, we have the general case in which one or two Mo

dimensional geometries are either missing or are interconnected in a -.

complex manner. .

The equations of motion depend on the coordinate choice,

particularly when the fact that mass is always distributed is 
taken into "

account. Reference [261 discusses methods of making this choice and

illustrates the substantial difference in response that can occur due to -

different choices. Reference [16] also discusses a component mode 
,

synthesis method for selecting coordinates and assembling the equations

of motion. We cannot present any of this material here in spite of its

importance.

A coordinate transformation of the equations of motion is sometimes

employed as in [9, 44]. The altered form of the equations may be

advantageous for our purpose as in [9] bu this does not appear to be

the structure consists of a chain of cells or units. Let us consider

this method in some detail. 4
%. 

A
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Consider the system shown in Figure which is linear chain of

oscillators (See [111) and where

u u2 Un 2  Un 1  Un

k 1k m1 k2 m2  k n-2 mn-2 kn mn

we have, for the moment, ignored randomness in the parameters. The

kinetic and potential energies are

n
2T =r m u (6.63)

n 1 2 2
2V = E k (u -u 2  u = 0r. 1 J j- ' U

S -which gives as equations of motion

mj(u ) - k+k (u (uu) = 0, j = 1, .01 , n-i (6.64)

mu +ku ffe .
n n nn o

* ,Introduce a new coordinate

w u -u ; (6.65)
j j+1 uj

let

iut
u x.e , x =0 , (6.66)

iWt
w y e

adj ejt
and let

J° '

I
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d j Y(6.67)

We now write the equations of motion as

i '- 2
mj+lw k J+2

1+kk kJ+l + k J+I
-- (I + 2T kj+dJ~+

j+i k~

(I + T J)d+ 1 , j = 0, ... , n-2

2
M W

1] - -1
i n n

n-i = 2 fo (6.68)

n
=-(I + Tn)d

n

where I is the 2x2 unit matrix

2
/ mW k

1k k

n 0

k; '2 n

dci = , d = ~... - (6.69b)

n 0/

d 0 d= -f (6.69b)

We can now relate the first displacement vector d to the last d by
o n

p



-119-

n
d 1 (I+T )d (6.70)

o 1 in

The matrix I + T transfers dJ+ to d ; hence, the name "transfer

matrix". Any structure whose geometry is a linear array of units, such

as in the above Figure, or of beams, etc, can be treated in this manner.

n
Let the elements in the (2x2) matrix I(I+T be . Then

i jk

(6.70) becomes

I Y)o a21(w) a22(W) fo (6.71)

The natural frequency equation of the chain is obtained by letting

f = 0 and taking the first equation in (6.71); it is

a1(W)X = 0 (6.72)

Since xn cannot be zero, the frequency equation is

a1l() = 0 . (6.73)

In [11], details, which do not concern us here, are worked out for the

natural frequencies when k1 = k, m = m.

Now assume the masses are random variables taking the form

m (1 + X1 )m , (6.74)

where X is a dimensionless random variable with mean zero. Introduce

.W 2 -1 mw2XJ

k 1k

T MW 2 , ZE mw2_. (6.75)
* / 2 mw

k +- 0

'#b k

then, with k- k,

V
" N' '.r ,,. . , .e "....' .. .'.o.'''.'.' .').'..,. ' ' . .: .. . '' . .'' .' .., ' .': .
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I + T I + T + Ej , (6.76)

Now (6.70) takes the form

n
d "11 (I+T+E )d (91)0 1 j

or

1U

d = [(I+T)n + E (I+T)J-IE (I+T)n- (6.78)

n-i n
+ £ (I+T)J-E (I+T)kI (I+T)n-k

J-lk-j+l kIT

+ *.. + H E ]d

A number of substitutions then make it possible to expand w in a seriesr

in the X :

n n 2 n-in
WjXj + + E E WljkXjXk + .... (6.79)

j r l ii J=lk=j+l

The main point to note is that normal modes of the mean system are not

employed. Let us contrast this method with that of Zarghame's.

Return to (6.63), let k j k and m m and employ (6.74) to obtain

LM ;

-a

B ".0".'
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M _M + LMX K -K. (6.80)

m 0 0 ... 0

0 m 0 ... 0

M- . . . ... .

0 0 0 ... M

-k 0 ... 0

2k 2k 0 ... 0 0

K n (6.81). . . ... . . /

0 0 0 ... k -k

0 0 0 ..- k k

1 2 ... j... n

00 0 ... 0

10 0 ... 0... 0 2

ti • .... .... . .

0 0 ... m... 0 j
U * oUU oooo

0 0. 0. n
' th

Let w and a be respectively the r natural frequency and normal mode

of the system with mean elements (i.e. M M, K K). There, from (A7)

.

--

U-..
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T(r) - - a-r -  ' (6.82)
ax2 --

8(k) - _-r k2T

rJ 2 2  , k * r, (6.83)

rj 2 2

_.r- r

dbj -

(r) 

r

deed onl upo rj 2 aw an e

JT (1 (2) (6.n)

arJ "o - - [2 (a '

r -r r r
+ Z l)M B(r)_ (r) a(l).)( 2 W2 .

rj A Im  r ( :j)2 -

.(r) 5(r)

We observe from (6.82) that the hth sensitivity coefficient of r
depends only upon w T -a rand M. Let

aT - (a( a(2)
T _ -r ..

i Then (6.82) becomes

__ .a mwraJ
( )o" 2 (--rj ) 2 (6.85)

remembering from (A6) that the a(i) have the dimension I/\Im, we see

that the right of (6.85) has the correct dimension. To see that the

Vsign is correct, observe from the first two terms on the right of (6.32)

that

m'

mw .(J)- 2-- W - ' (a (6.86)
r -r 2 r (686

Positive X mean increase in mass. We know from Rayleigh's Principle

[I, Sect. ] that an increase in mass lowers or leaves unchanged every

natural frequency; thus, the negative sign on the right of (6.85) is

correct.

!Ij
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The importance of the sensitivity coefficients (6.85) and (7A)

resides in the fact that they reveal by their magnitudes those w that

are either sensitive or insensitive to uncertainty in member values.

On evaluating the 0 (k) from (6.83), we can write down the right of
rj

(6.84). The main point to observe is that now we need all a and w2

Thus, we can obtain the partial derivative values appearing in (6.32).

We refrain from these obvious details to conserve space.

Let us contrast Zarghame's procedure with that given in [11).

"In the former, we need all a and w to obtain (6.32); in the" -Tq -Tr

latter we need all w but not the normal modes since the intermediate

coordinates were eliminated in obtaining (6.70). Thus, Zarghame's

procedure does require more information than required in [I]. However,

since all computer codes produce the a along with the w r, the

additional information required in the former is always available

anyway. Hence, relative to effort the two procedures do not differ

substantially.

The sensitivity coefficient w in (6.79) is given by

W]* 2\ 01 Cos 00 (6.87)
-J -

where

8 Cr, n) = (2r-1)w
o 2(2n-1) (6.88)

B 2 sin 2J 8 tan B
1j 2n+1 o o

While these are easy to evaluate, the physical significance of changes

in particular parameter values is not as easy to grasp in (6.87) as is

the case with the corresponding formula in (7A). This difficulty

increases with w2j' and wljn in [11]. Hence, from the point of view of

-I

t oY(*p,
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physical understanding of what is of significance in a system relative

to variability in natural frequencies, Zarghame's procedure appears

superior to the procedure given in [11].

The main advantage of the method given in [9] is that by exploiting

the system geometry explicit formulas can be written out for the

quantities of interest. However, since all computations are now

performed on a computer, this is no longer an advantage.

Two other points deserve comment. First, the formula for w in
r

[30] only employs the first two terms on the right of (6.32). This

makes

E{wr}= w

whereas in (6.32)

N a2

Ew I w + E(aX a.)EXjZrl TW 2 ax k  jXk) + ..

Thus, in [30], the mean of w is the mean system w. However, from the
r -r

formula above this is not correct not the case. Also, (6.32) gives a

different formula for variance of w than given in [30]. It follows~r

that the method given in [30] is incomplete. Second, sensitivity

coefficients also play an important role in other types of system

behavior analysis such as automatic control [14,15,18,19,25]. Since

large space structures will contain control systems, uncertainty in

control system parameters coupled with uncertainties in the structural

system parameters must be kept in mind.

References [5,8,11,20,29,35,36,37,39,40,42,43,48,49,50,52] discuss

frequency response, impulse function (Green's function, impulsive
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admittance, impedence) mainly by perturbation methods. Those that do

3 not involve perturbation methods are [5,8,201. Let us take up the

latter group first.

The technique involved in [5,8] for assessing the variability of

frequency response (or impedance) is what might be called the direct

method. For a one-degree of freedom system, we have

( K-w4+iwC (6.89)

where K, M, C are scalar random variables. There are cases where

knowing the distributions of independent K, M, and C explicit results

can be obtained. While interesting results can be obtained by this

, method, it is clear this technique is of limited practical use in

complex systems.

Reference [20] starts by making assumptions about the statistical

characteristics of the Green's function G of a system, and writes the

response as

q(t) - f G(t,T)f(T)dt . (6.90)
-M

G is then related to the equation of motion

q - -Aq (6.91)

by assuming

A- A + N(t) , (6.92)

where A is a constant matrix and N(t) is a normal noise process. On

letting

A
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t
W(t,T) - f N(e)do , (6.93)

we find

- -A~t-T)+W(t ,LJ
AG(t,T) [A+N(r)]e -A  - ' (6.94)

Means and moments of q(t) can now be obtained in terms of the moments of

G(t,T). If we take N(t) to be independent of time, then this technique

applies to our problem.

We observe from (6.94) that even the expectation of G is not easy

to evaluate because of N(T) in the coefficient and W(t,T) in the

exponent. By assuming N(T) is generated by filtering a white noise

process, it is shown that the moments of G(t,T) can be evaluated.

Further investigation of this interesting technique is necessary before

we can determine if it can be east in a form useful to us. Even if it

can, additional work is necessary to establish that it can be applied

when N(t) is constant or only slowly varying.

Advantage is taken of a specific structural shape from the outset

in [11,39,50]. The first two assume a linear chain of similar elements

differing in the random nature of element parameters; the structure in

[50] is a circular chain. Linear one degree of freedom damped

V.

oscillator elements are assumed in the first reference; damped

Bernoulli-Euler beam elements with random lengths are assumed in the

second; and a continuous distribution of linear spring connected linar

one degree of freedom oscillator elements, as in buckets or a turbine

IN disc, is assumed in the third. When damping is assumed, it is taken as

small so that undamped normal modes can be employed. The transfer

Nmatrix technique is employed in [11,391 since a chain-like structure is

i~ 5.*5 * *<
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4*

assumed; this makes it possible to obtain analytical results that are

3 complex indeed. Because of this complexity, it will require

considerable effort to obtain numerical results, and it is by no means

clear that what is proposed is as easy to use as (6.54). The periodic

circular structure in [501 makes it possible to employ Fourier series;

results on natural frequencies, normal modes, and response are obtained;

on t&ose rare occasions when a structure has a circular form, the

technique employed could be considered but not otherwise. Excellent

graphical results that assist in understanding in a qualitative sense

the effect of disorder on response are presented in [11,39]. All point

out that high variability in response will occur in lightly damped

disordered systems. The techniques employed lack the generality of

(6.54) and are not of direct interest.

fl Let us consider [35,36,37,421 next. In each of these references

random parameters are introduced in special ways which renders the

technqiues used and results obtained of limited use. [42] does

introduce a new quantity of some interest; they consider the equation

mx + k(l+c)x - f(t),

where C is random with zero mean, and introduce

2 IE{x2(t)}-x2(t)t=O("V[x2(0)]= <x 2(t)> (.5

as a measure of the time for the mean square response E{x 2(t)} to

deviate from the unperturbed response, i.e. x 2(t) with t = 0. The

normalization with respect to the time average <x 2(t)> t is selected so

that V[x 2(t)] + I as t + . A simple expression is then produced for

.

.U
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the envelope of V, namely

1 222

]V[x (t)Ienv. 1 - e (6.96)

where w . k/m, a . Var e. V is essentially the growth in uncertainty2 2

in the response as a function of a2 and t. This is a nice idea that

merits development since it says that when

1 2 2t2

-wat >4

response location is lost.

Papers [48,49] merit attention not for techniques involved but

rather for some qualitative results that may be of interest in

connection with large space structures. Reference [48] discusses wave

propagation in long beams with many supports, where there is random

variation in length among the beam segments. The point of interest is

that the random variation in length among the beam segments has a

substantial influence on which type of flexural waves will propagate arid

which will attenuate. Reference [49] is concerned with the confinement

of vibration to certain regions of a structure due to structural

disorder. The reason for noticing them resides in the fact that in a

large space structure it may be desirable to introduce structural

irregularity in order to prevent wave motion from propagating throughout

the structure and/or confining vibration to a favorable region of the

structure. These references would then form a useful starting point.

It should be noted that the "receptance method" [50], frequency response

method, and the mobility method provide essentially the same approach;

the advantage of the first and third of these methods lies in techniques

.4

3
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for obtaining the frequency response in a sequential mannr. Referene

[52] investigates failure probability in a structure with uncertain

properties; it emphasizes the importance of considering these

:- .. uncertainties when estimating such probabilities.

K4

A,

A

4

-- C.
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VII. Liouville Equation

3The techniques discussed in Section 5 are based directly upon the

equations of motion. For example, the perturbation expansion of the

r. frequency response Z (W) employs the equations of motion to derive

Z- (w) and the relations it satisfies. There is another approach based

upon the Liouville equation for the time evolution of the joint

probability distribution function of the state space (2nxl) column

vector x and the system parameters. We consider that approach in this

Section.

The use of the Liouville equation in mechanics and statistical

mechanics is of long standing [51,52,53, for example and going back to

Maxwell]. These references do not assume system parameters are random

variables, and average of quantities under equilibrium conditions is of

3main interest. While not of direct interest to us, it is possible to

adapt these early methods to our needs. We derive the needed form of

the Liouville equation following a procedure suggested by Kozin [5].

Consider the equations of motion in the form given by (1.27) with f

= 0:

x = Ax , (1.27')

where x is the (2nxl) column vector whose transpose xT has the form

x = {ql, ... ' qn; q1 ' ... ' qn} and A is the (2nx2n) matrix given by the

first of (1.28). The vector x is the state space form for representing

the system response; the components of x will be denoted by xk(t), k

A 1, .•, 2n. The random variables in A are, as before, denoted by

X ... , X . We will rewrite (1.27') in component form as

L P'
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'k gk(x1, .. '2n; Xl ... , Xm; t) , k - 1, .. , 2n. (7.1)

Let p(x1 , ... I x 2n; X1 , ... , X n; t) be the joint probability

distribution of the random quantities x1 , ... , x 2n X1, , X n We

define the characteristic function 0 as

2n m
S E[exp i( E 6 kx.k(t) + E *1 1 ] i x (7.2)

k=l 1- i-I

The differentiation of (112) with respect to time gives

as2n .2n m
~E - Efi E e kxk(tOexp i( E e kxk(t) + E (7.3)

k= 1 k-1 J=1 jx

The use of (6.1) in (6.3) yields

30 2n 2n m
TF.i E e kE~g kexp i( E e kx.k(t) + E *. XI (7.4)

k=l k=l J=1

Since (7.2) is essentially the.Fourier transform of the joint density

jfunction p(x1, x 2n; X .. X, X; t), the inverse Fourier transform of

(7.4) produces

3n
3 (g p)

-Z (7.5)

1j
The solution of (7.5) for p is given by a suitable function of the

independent integrals of the Lagrangian system

- d -d =dx 1  dx
dt -dp1 2y(7.6)

1 fim a 2n f1 f2n

Let u1, .... u2 be 2n-independent integrals of (7.6). Then we know

that the general solution of (7.5) is

*(i ... x 2n; X1, ....,X ; t)=- h(u1 , ... , u 2u; X1, .... X; t) L

where h is an arbitrary function whose form is determined by the initial

SS,
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conditions on x.

The 2n-integrals u1 , ... u2  may be determined in one of two ways.

First, the general solution of (7.6) is

At
x e xo;

thus

-At x = u, (7.8)

T
where u = {U, ... , U2n}. Further, for distinct eigenvalues of A,

-x t
1

e

e-A 2t

-At -e =U U (7.9)

)2n
e

where X1. .... A2n are the eigenvalues of A, and U is the (2nx2n) matrix

of corresponding eigenvectors of A. This is one way to determine the 2n

independent integrals u required in (7.7).

The second method employs Laplace transforms and the equation

x = Ax with x = u . (7.10)
o

Then from the Laplace transform of this equation, we find

-1--

L 1[(Is - A)- Ix = u ; (7.11)

it should be noted that the u's depend on the x's and the X's. To

evaluate the inverse Laplace transform, we need the eigenvalues of -A

or, equivalently, the roots of (Is-A) = 0.

U,
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Either employing (7.8) or (7.11), we have the required integrals.

Hence, in principal, we find with (7.7) the exact expression for the

joint density p, the arbitrary function h being determined by the

specifics of the problem addressed.

Consider the case where the parameters X1, ...' X are independent

of the integrals (i.e. the initial vector). Then (6.7) can be written

as

P(Xl, ... , x2n; X1 , ..., Xm; t) = h1(u, ... , u2n; t)h2 (Xl, .". Xm )

where h2 is the joint density function of the parameters. Suppose we

are interested only in the impulsive response for q1 ; this means at t

0, xn+l = 1, with all other x 0. Then at t - 0,

P(Xl, -0.x 2n; X1, ..., Xm; 0) (7.12)

S
6 (X1 )...6(Xn)

6(xn+l-l)... - -
6 (X2n)h 2 (Xl, ... , Xm) o

In view of the fact that at t - 0, u x , we see that

h1u 1 , ..., u2n; t0 u) ... U n+1  ... u2n)

where 6(.) is the delta function. Finally,

5I 1, ..., x2n; X1, ... , Xm; t) (7.13)

-i(u ).6(un)d(un+-1).. .6(u 2 )h2(X1  X )

Let us now illustrate this process with a simple example.

Consider again the undamped one degree of freedom linear

oscillator. Let K/M - 92 be a random variable with sample value denoted

by w. The first order system representation of the equation of motion

is

v

S
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X x2 f ' (7.14)

2
" 2ax 1 f2

Equation (7.5) becomes

+ ~ 2  ap 0 ,(7.15);t 2ax1  2

and (7.6) takes the form

dx dx1r 2

-- x2  x . (7.16)

We now find the integrals of (7.16); they are

u I  x IlCos Qt - - sin 1t , (7.17)

u Xl sin Ot + x cos at

2 1 2

Assume, for example, 92 has a discrete distribution given by

h 2 (W2 ) - w ) . (7.18)

1

If we are interested in the impulse function, at t = 0 we have x1 - 0,

x2 f 1. There, (7.13) becomes

22

P(Xl, x 2, W ; t) (7.19)

.1 2 12

x 2  n 22

= 6(XC Wt ---- sin t)6(xsn wt+x 2cos wt-1)EP 6(w -
1 Cos(w 1s2 1 1~

Let us determine the mean of xI to illustrate a possible use for

(7.19); we have

2 2
E{x 1  = fdxlfdx 2fdw [x;P(x 1 , x2 , W t] • (7.20)

Some manipulation (see [5]) yields

q
i ; ' . '. - "-" .'," ". -".". " ",,. - ,- -', -- '4,' -'-"",. ,.. .,- .. ' " *. '. ,'.%',2,
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n sin w t

E'x1} 1 EpX i P (7.21)
1 i i

Other illustrations, including damping, are given in [5,61. We are

* frequently concerned with the moments of x. Let us next consider how

(7.5) can be employed to do this.

To keep the details simple, consider the linear damped one degree

of freedom system with equation of motion

X . x 2 ' l1 (7.22)

10X K C -
2 Mx - M X2 f2"

Equation (7.5) now takes the form

a a(fP1p) a(f2p)+ a I  + x 2  =0 .(7.23)

a7 x 1  + ax2

Assume the M, K, C are independent of the initial vector with h2(m,k,c)

the pdf (prob. den. function) of these parameters, and write

:.d p(xI, x2 ; mk, c;t) - p (xi, x2 ; t)h2 (m,k,c) (7.24)

Then pl(xl, x2 ; t) is the joint pdf of x and x2 conditional on M = m, K

=7k, C -ac. Since h2 is independent of xl, x2, and t, we can write

(7.23) as

ap1 _a(glpI) a(g2p1)Sat 
+ ax1  + ax2  = 0 . (7.23')

Let the expectations

- E{x 1tm,k,c} = mlo(t), Ec{x 2Im,k,c} - m 0 ,1 (t) (7.25)

be conditional on M, K, C. Let us evaluate these expectations;
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EEc lx1 m,k,clX 1  m1,0 (t) ffxl1p dX 2

EcZ{x 2Im,k,cl{x 2} m0 ,1(t) - ffx2pldxldx2
Differentiation (partial) of these equations with respect to time

? produces

m j ffx1 T-- dx1 X2 (7.26)

m 2kJ~ dx dx20,1 = ffx2 atd1d2

But, from (7.23'),

ap1  a(glp1 ) a(g2p2 )
-- x1  ax 2  (7.27)

The substitution of (7.27) into (7.26), the employment of (7.22), and

integration by parts of the resulting terms on the right of (7.26)

finally yields

o i no 1 ' (7.28)
k c

i O'l -mm 1 0 -mm'l"

The same procedure will produce the equations for the conditional

moments Ec{x 2Im,k,c), Ec{x2Jm,k,c}, etc. We note that for the first

conditional moments we could have taken the conditional expectation of

* (7.22) to produce (7.28); however, this procedure only applies to the

first moments.

We integrate the moment equations (7.28) to obtain the conditional

*' moments as a function of time. On multiplying these moments by

h 2(m,k,c) and integrating over m, k, and c, we obtain the moments of x

2*,. and x2

It is clear from the above discussion that the Liouville equation

i will provide the exact solution for the joint probability density

!S
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function p(xl, ... , 2 ; X1, ... , ; t) in the absence of external

forces provided the integrals ul, ... , 2  can be obtained. Further, it

provides a straight forward method for determining the moments of x from

which means and variances of x can be obtained.

The Liouville equation applies when there are no external forces.

We are interested in the case when external forces are present, of

course. Let us see what can be done along these lines.

The Fokker-Planck equation is the natural extension of the

Liouville equation. This equation has already been derived above. (See

Section 2 and also [8], [6b]). We confine attention to the case in

which the external force vector f can be obtained by passing gaussian

white noise through a stable linear damped system. We have as equations

of motion, conditional on M = m, K - k, and C - c,

dx x2dt

dx -- xdt-- xdt + xdt(7.29)2 m m 2 3

dx3 = -Bx 3dt + dB , x3  0 at t 0

where we have employed the differential notation in this case, set f -

x 3, and where dB is the Brownian motion increment (see Section 2) with

E{dB} - 0 , E{(dB) 2 o 2 dt . (7.30)

The last equation of (7.29) represents the fact that the excitation is

obtained by passing a gaussian white noise through a linear first order

stable filter. We notice that for the Ito system (7.29)

xT = {x1, x x3} is a vector Markoff process that generates a Fokker-x2 ,

Planck equation.
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It can be shown that in this case the Fokker-Planck equation for

the conditional probability density function p1 is

a - x2 x2 m _S x3)pl} - )ax p (7.31)

2 21

3

We observe that all but the last term on the right are the same as would

have occurred in the Liouville equation in the absence of f. Let the

conditional moments be

SE{x 1 x2 x3 3

= 1 k2 3 (7.32)

k kI k
" fffx 1x 1X3 P1 (xl, x2, x3 )dx dx2dx3

Then, proceeding as in the development of (7.28), we find

m1,0,0 m0,1,0-. : k _- ( + ( m)(7 33
m - (-) ml,0 0  m Ol

On multiplying the solutions of (7.33) by h2(m,k,c) and integrating out

the condition in these three conditional moments, we finally obtain the

moments of x as a function of time. We obtain in analogous fashion the

differential equations for the second conditional moments; we do not do

this as the steps are of a mechanical nature and not of direct interest.

The main point to notice is that differential equations for the

conditional moments of x can be obtained when an external force is

present in the equations of motion provided this force is produced by

Ipassing white noise through a suitable filter.

."V
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It is important to point out that for any gaussian external

Mexcitation the solution vector is gaussian conditioned on the random

parameters. Therefore, all conditional moments can be obtained but not

as easily as above [79].

The Liouville equation enabled us to obtain, in a straight forward

manner, the exact expression for the conditional probability density

function pI. Reference to (7.31) suggests that it will be much more

difficult to obtain p1 from this equation and we shall not pursue this

line of thought further.

%r

N.
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VIII. Mean Square Approximate Systems

3We consider, in this section, a technique for including disorder or

parameter uncertainty that follows a different line than taken in

,. Sections a) and b). Specifically, mean square systems are employed. We

begin by introducing this type of system [13,17].

Let us begin with a very simple example in which there is no

disorder and no damping. Let the coordinates be q1 , .... qn Then,

with

2T - m kqjq k , 2V = kjk qjqk 6W - fj(t) 6qj (8.1)

.4 where summation convection. Then (1.24), with mass coefficients

included, can be rewritten as
4.

mjkq k- + k jkqk f (t) . (8.2)

Let, with f constant,

ojj
f(t) - foS(wt + *) . (8.3)

Then, the forced motion

qk - ukcos(wt + *) (8.4)

satisfies

(kjk - w2mjk)uk = fo " (8.5)

These equations state that given the f and w, the uk are determined by

the solution of this linear system of equations. Further, if w is the

natural frequency wr and the uk define the rth mode shape a rk' then the

f must vanish. Let us look at the natural frequency problem in an
oj

unorthodox manner.



-141-

* Suppose we pick an w and a set of uk which may not be one of the

natural frequencies and normal modes. Then the right of (8.5) will not

be zero and we need force amplitudes C to produce this motion:J.J

(kjk - W2m = £ . (8.6)

The C are the amplitudes required to maintain the assumed motion; we

regard the £ as the amplitudes of the constraint forces required to

produce the motion.

Consider next

n E 2
I(n,w) - Z 0 (8.7)

For a fixed w, this is a positive definite quadratic function of the

u s. We can use this equation to find the natural freq,,encies w and~r

corresponding normal modes ark. Assume the u's are normalized in some

manner (for example, u = 1 or better mjkujuk = 1). For fixed w, we

find the minimum of I(u, w) ) 0. Notice that if w - w the u's that

produce a minimum are the ak and I(ark, 2r) =0, since the c 0, j

1, ..., n, in this case. It follows that if for a specified w we find

the minimum of I(u, w2) and this minimum equals zero, then this w is a

'* natural frequency and the u that produce this zero minimum are

proportional to the corresponding normal mode. Let us consider another

interesting aspect of this method.

Consider a frequency window g(w) with the following properties:

*p "%

.5
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g(W) )0 , W (w "w (8.8)

Sf g(w)dw 1 , f wg(wldw <

Replace (8.7) with

I(u, g) - f E2dw . (8.9)

Find the u that makes (8.9) a minimum. The interesting feature of this

method is that if there is a natural frequency of the system in the

A frequency interval (w , w 1, the u in min I(u, g) determine the normal

mode of this natural frequency. Let these u be in component form

r u ; then the corresponding natural frequency is
{' n

determined by the Rayleigh quotient:

k u(r) (r)W 2 kjkj Juk (8.10)

r mku(r) (r)
mku Juk

thwhere we assume we have found the r normal mode and its natural

frequency. It follows that if there is concern that an interval

(w , w ) contains a natural frequency, we have method for determining

if this is the case without determining all natural frequencies of the

system. References [13,17] give details on this matter we cannot

discuss in this Report.

The computational problem of finding the minimum of I(u, w 2 ) is

carried out using one of a number of computer codes based upon conjugate

gradient techniques, and, hence, is not a problem.

So far, there has been no disorder in our system; i.e. the

parameters mjk and kjk have been assumed to take definite values. Let

jk j
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us assume at this point that mass and stiffness contain random

variables. We define, in this case,

, w n 2

I(u,g) - E{ f g(w)EE d} (8.11)

Awhere, in vector-matrix form

n2  T 2 T 2
4 2. u (K - w M) (K - w2M)u (8.12)

n2

Since E only operates on EC. in (7.11), we have

).1 J

E{EC} = E{uT(K - w2M)T(K - w2M)u} (8.13)

and w is a fixed parameter in (8.13). We assume the u are parameters to

be determined. Thus, (8.13) takes the form

ZC} =uTE{(K - w2M) (K - w M)}u . (8.14)
'I 1 J

We note that (K - w)T 2) T K - w 2 because of the symmetry assumed for K

and M. In all events, means and second moments of K and M are all the

information needed to determine the expectation in (8.14).

We then proceed as in the deterministic case, since I(u, g) has a

deterministic form.

To relate (7.7) to (7.13), all we have to do is assume

g(W) = 6(w W) (8.15)

where 6(.) is the delta function. The substitution of (8.15) into

(8.11) yields

S
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I(u,w) - uTE{(K - w2M)T(K - w2M)}u . (8.16)

This expression differs from (8.7) because of the assumed random

parameters in K and M. If in (8.7), w is a natural frequency of the

deterministic system, I(u,w) = 0. The I(u,w) > 0 in (8.16) because of

the random parameters. Use of this fact has been made in [32] to obtain

an estimate of the variance of natural frequency w r the formula is

" ~I(UrW)
2

Var r (8.17)
r 4w2

r;i th

where w r is the r natural frequency and ur is the corresponding normal

mode for the system with mean parameter values. Monte Carlo simulationU

(32] reveals that (8.17) can be conservative and a correction is

suggested. Equation (8.17) is easy to use since a minimum for I is not

required. Further, (8.17) provides a much simpler method for estimating

the variance of w than given in Section V. However, mean square~r

approximate systems do not provide any information on E{w rI or on

variability in mode shape. Let us next consider how these systems apply

to estimating frequency response with parameter uncertainty present.

We take the equations of motion in the form

Mq + Cq + Kq = f . (8.17)

-1The frequency response Z (w) and Z(w) are defined by (6.47) and (6.48).

For the external force,

~iwt
f = i , (8.18)

with r fixed and 6 = 0 for j # r, 6 = 1, the component form of
(.7jr rr

[ ,.(8.17) is

JY
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q Z-1(w)e iwt (8.19)

which is exact.

Suppose we try to approximate (8.19) with

q = ire , (8.20)

where the 8 are not known in advance. The equations of motion now are
Jr

not satisfied and we must introduce constraint forces c to bring about

their satisfaction as in (6.1):

2p. (K - w2Mjk +iwC )jk - 6jr i Jr (8.21)

Form

1(8, w) = Z j. } , (8.22)

1 Jr Jr

where asterisk denotes complex-conjugate. This I is just like (8.11)

except the S have replaced the u. We find the $ that make (8.22) a

minimum, denote this 8 by 0. Then, = i  , ... ' n I is the mean square

* approximate to the Zj (w). It can be shown that if the system is

deterministic (i.e. contains no random parameters) the 8 are exactly the

Z. j(w).

"-The C are complex; hence, the right of (8.22), when written out,

is

n 2 * 2
E E{[(K jk-w M jk-iwC jk) kl6 jr][(K -w M+iw )8 r-6 jr]I . (8.23)

It follows that the minimum of (8.22) is for the real and imaginary

parts of 8 . This added complication poses no additional computationalt 8kr"

problem [39, 42].

N
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The method also supplies an error criterion that makes it possible

to judge the accuracy of the 8kr.

References [39,42] describe in some detail how the above technique

can be applied to estimating the frequency response in a number of

structures with specific attention being paid to numerical details of

the computations. Reference [511 also describes how these techniques

can be applied to the construction of a sequence of approximants for a

complex system by starting from a highly constrained initial system and

gradually relaxing the constraints. In these three reference, extensive

use is made of the error criterion to determine when the estimated

quantities (usually frequency response) are sufficiently accurate for

the purpose in hand. A comment on what mean square approximate system

provide is now in order.

We observe, for example, that these systems enable us to estimate
frequency response Z-1 () by means of 8 (w). The 8 (M) are

Zkr(W kr kr

deterministic numbers that take into account the means and variances of

the statistical parameters of the structure. Thus, the 8kr(w) provide a

deterministic estimate for Z (w). In the form given above and in

[39,41,42], it is not possible to obtain statistical information

concerning the Z- (w). However, it is possible to employ Monte Carlo

methods to obtain estimates for the 8kr() given the parameters are

sample values to obtain sample values for the 8 kr() from which

statistical information can be obtained.

The statistical energy approach (SEA) merits mention at this point

since it also employs average energy concepts [55,56,57,59,80].

Basically, SEA estimates the average flow of energy from one part of a

"-4

!s
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structure to another. For example, if there is energy input into one

p part of a complex structure, this method provides an estimate of how
.4

this energy flows into another part of the structure. Thus, it is

possible to estimate average vibrational energy present in any part of

the structure. Information of this type is frequently the only type of

information it is possible to obtain about the response in an extremely

complex structure containing a large number of undamped natural

frequencies in 1 hertz. In so far as we know, nothing has yet been done

to include the influence of statistical parameters; however, the work

-given in [59] suggests it might be possible to do this.

F'-
•.. *.-"
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IX. Bound Determination .

Sections V and VI discuss techniques for response estimation in

lumped linear systems whose parameters take time iadependent uncertain

values in a probabilistic setting; thus, it is possible by these

techniques to obtain statistical information about a natural frequency

and its normal mode, a frequency response, and a response. The .

techniques discussed in Section VII provide a deterministic frequency .

response in which account has been taken of the statistical properties

of the parameters. This section assumes that all we know is a bound on

the parameter values; we then will be interested in what can be said

about bounds on the quantities of interest.

Needless to say the stability and control of systems in which only

bounds are known on parameter-values and the disturbances continues- to

be of interest to those working in automatic control, economic analysis,

and stability theory [34,58,60,61,62]. Maximum response in structural

systems has also been and continues to be of interest to structural .,%

engineers [58,61,62]; however, it is usually assumed the parameters in

these systems are known exactly. Let us consider our problem from the %

point of view of those in automatic control.

Let us consider the simplest possible linear system in order to fix

ideas. Assume the system is described by the first order linear

differential equation in the single variable x:

x = -(a + Aa)x + f(t) , (9.1)

where f(t) is the external disturbance, a is a known positive constant,

Aa is an unknown constant with -Aa 4 Aa < Aa, Aa is a known positive

%* % %
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-constant, and a-Aa > 0. Let the initial condition on x be

x(O) - 0 .(9.2)

We are interested in bounds on x for t > 0.

We consider as nominal solution of (9.1) the case where Aa -0; *g~-

thus let x satisfy

x M-ax +f(t) (9.3)

with initial condition i(0) =0. The solution of (9.3) is

tI

x - fe-a(t-T) f(T)dT (9.4)
0 ~

Introduce the error function

y X-x .(9.5)

Then y satisfies

y--(a + Aa)y -Aa~x(t) , y(O) =0 .(9.6)

Define a Liapunov function V by

1 2V(t) jy (t) .(9.7)

Then,

V-Yy (9.8)

= [-(a + Aa)y -Aaxly

2 --(a + Aa/7 - axY: -:-

Let Aa -:-a. We shall see shortly that this yields an upper bound on V

which is equivalent to bounding the errror given by (9.5). Then, on

taking the absolute value of the second term on the right of (9.8), we .'

obtain

% *- ~
Wa.
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-Ia-Iy + ali(t)I yI (9.9)

which from (9.7) gives

-1/2
( -2(a - L'a)V + Taiji(t) 1(2V)

Next, let

n VI/ 2  (9.10) 04 P

which gives

"* I V

2 V1/2

We now can write (9.9) as

n ( -(a - 3)n + a jX(t)l (9.11)

Let us solve (9.11) for the equality:

-an + A IX( t)I , n(O) - 0 (9.12)

where a = a - Ma-, obtaining .4

A- -ye -a(t- T ) Ix(T)IdT (9.13)
IT o

or, by (9.10) and (9.11),

V1/ 2  _ae-a(t-T)IX(idT (9.14)

Finally, by appealing to the Schwarz inequality for integrals, we can

write (9.14) as

1/2 11/2
1/2 € e-2a(t-t) (T)dT (9.15)

o o

Let us examine this expression.

1N%
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First, the first integral on the right can be evaluated as -

(1 -e2 at)I1/2 .(9.16) N

12a

Second, the left equals I- (T2 - , by (9.7). Hence (9.15) reduces to

~t 2

ly(t)l 4 .a [1 - e-2(a-a/ l/J (T)dT]1 / 2  (9.17)

\ I 2(a-Aa) 0

At t = 0, we get fy(a)f - 0, as we should. The term (9.16) increases to

unity as time increases. The termI

t 2 1/2
IfX (T)dt] (9.18)
0

-2
will increase with increasing time; if x (t) approaches 0 as t

approaches -, then (7.18) will increase to a positive limit. The bound -.

is proportional to

\12(a-Ta

indicating the larger Aa, which determines the bounds on a, the larger

ly(t)(. We note that the bound on ly(t)l increases with time using

(9.16); (9.14) will provide a smaller bound, of course. In all events,

equation (9.5) makes it possible to assert that x(t) lies within the

bounds

X(t) ± t l •Y (9.19) q

Thus, the technique described enables us to put bounds on the response

given bounds on the system parameter.

The example employed above is for a first order linear ordinary

differential equation. References [ ] suggest that the technique can be

A,'
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extended to vector differential equations of this type. However, the

details will have to be worked out to determine if this promising

technique can be put to practical use, since it may turn out that the

smallest possible bounds are too large to be of practical value.

NM I.- 1- 'N
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X. Physics

The physicists have for a long time been concerned with the

vibrational properties of disordered systems. In particular, they have

been interested in crystals in which disorder is present (See [63-75]).

One type of disorder is called "substitutional disorder"; here one or

more atoms in a regular crystal are replaced with another atom or atoms

different from those in the crystal (while the organization of the I
crystal is not changed). The other type of disorder is called

"topological disorder", in this case the basic organization of the

structure is changed. A moments reflection will indicate that our main

concern is with the first type of disorder, where member properties may

change but not the structural organization. For the second type to

occur, structural members would have to be removed, added or rearranged

differently. Much progress h"s occurred in dealing with substitutional

disorder; much more modest gains have been made for topological

disorder. It might be hoped that much of what the physicist has done

could be adopted in toto in studying the response in substitutionally

disordered structures. Based on a relatively short study, this does not

appear to be the case because of different interests.

We are interested in natural frequencies, normal modes, frequency

response, impulse function, etc. in systems with a relatively small

number of degrees of freedom as a rule. By and large, the physicist is

interested in estimating the number of natural frequencies in a 4 4

specified frequency interval; to do this, a frequency spectrum must be

estimated. Hence, they are interested in the effect of various degrees

of disorder on this spectrum from which optical, thermodynamic,

1%
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electrical, etc. properties are obtained. Thus, our interests are very -

different from theirs.

The early work of Hori and Asaki which introduced the method of

transfer matrices [68,69] did provide a technique that has proved useful

when dealing with chain like structures. However, mechanical structures

do not usually possess organizational regularity as in crystals. Hence,

as noted above, transfer matrices have a limited range of application. -:

References [73,74] indicate how a Green's function (impulse

function) can be employed to derive information about the frequency

spectra. So far, we have not been able to determine how this technique

might apply to structures. Nonetheless, detailed study may reveal there

are possibilities that have been overlooked in this brief survey.

The early work of Born and Brillouin [3,6] on the effect of

experimental errors on the motion of classical mechanics systems is of

course classic and is worth reading just for cultural reasons.

%%
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Appendix A -. 5 ,

Zarghame's method with mass variability included.

Assume the mass matrix M can be written in the form

ml 1
M M + E Y M (1A)

where M is the mass matrix when all structural numbers take on their
jth

mean masses, and M the mean stiffness matrix of the j element. Now

some of the Y may correspond to some of the Xi in (14). Hence, to

include this possibility, we set

{W1 , ... , Wmn} - {XI, ... , X + {Ylp ".. Y } (2A)
m2 m 1 ** m1

with m2 4 m + mI1 . We thus regard -

K -K , ... , w )
2

M - M(Wj ,  ... m 2) (3A)

Equation (19) is replaced by

Mq + Kq -0 (4A) ik

where q is the same (nxl) column vector as in (20). Equation (23) is

replaced by

(K - w2M)a -0 (5A)

and a is the same (nxl) column vector as in (22). is

We apply the same procedure as employed before to obtain the

partial derivatives of w and a with respect to the Wi, replacing the '. . -
r r

orthogonality conditions (26) by *
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T TaMma-0, aKx -0 if s r-
r s r s

CLTMa T1 ~Ka -w 2 (6A)r r r r r
We summarize the results for only wr

aw r 1 T2 T
[a K 1a - w aM a (7A)

awi 2w lr~i rr r-.i r

k r
Ti 2T2wKQ-w Mr-k

() .-. '~ r r rk-i rr

rk-

rj 2 2w w (8A)
rw (-2 r3V +_w()())w w2-

jwia i= r a 3w ri 'kj ki rj )(k r

+ 4w aw r(r) + awr r
+4 3W rj 3w r
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